• Title/Summary/Keyword: 비선형 시뮬레이션 기반의 수치 최적화 기법

Search Result 4, Processing Time 0.016 seconds

Online MTPA Control of IPMSM for Automotive Applications Based on Robust Nonlinear Optimization Technique (비선형 최적화 기법에 기반한 자동차용 영구자석 동기전동기의 실시간 MTPA 제어)

  • Kim, Hyeon-Sik;Sul, Seung-Ki;Yoo, Hyunjae
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.71-72
    • /
    • 2017
  • 본 논문에서는 비선형 최적화 기법을 이용하여 자기 포화(magnetic saturation) 및 교차 결합 현상(cross-coupling effect)을 고려한 매입형 영구자석 전동기(IPMSM)의 실시간 MTPA 제어 방법을 제안한다. 이는 토크 지령 추종과 최소 동손 운전을 만족하는 제한 최적화(constraint optimization) 문제로 접근할 수 있다. 이를 통해 유도한 연립 비선형 방정식의 경우, Levenberg-Marquardt 수치 해석법을 적용하여 안정적이면서 빠르게 해를 구할 수 있다. 이러한 방법을 이용하면 참조표(look-up table) 없이 운전 환경의 실시간 변동을 고려한 효율적인 MTPA 운전이 가능하다. 시뮬레이션을 통해 제안된 알고리즘의 전류 해가 최적 운전점과 일치함을 확인하였다.

  • PDF

Mission-based Operational Orbit Design for Sun-synchronous Spacecraft (임무기반 태양동기궤도 운영궤도 설계에 관한 연구)

  • Lee, Ji-Marn;No, Tae-Soo;Jung, Ok-Chul;Chung, Dae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.752-759
    • /
    • 2012
  • This paper presents a mission orbit design method for spacecraft which use the sun-synchronous and ground repeat orbits. In this work, we have proposed a new design procedure, "Nonlinear simulation-based numerical optimization technique" using the commercial S/W's such as STK (Satellite Tool kit) and Matlab, which are widely adopted S/W's in the area of orbital mechanics and engineering analysis. Inclusion of all the perturbation effects on the spacecraft not only can more precisely satisfy the mission requirements for sun-synchronicity and repeated ground track, and also operational requirements such as minimum change in the S/C local time, maximization of the contact time with a specified ground station, etc. can be appropriately considered. Design examples for LEO sun-synchronous mission are presented to demonstrate the usefulness of the proposed method in this paper.

Optimization of Sun-synchronous Spacecraft Constellation Orbits (태양동기궤도 위성군 궤도 최적화에 관한 연구)

  • Kim, Hwayeong;No, Tae Soo;Jung, Okchul;Chung, Daewon;Choi, Jin-Heng
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.141-148
    • /
    • 2015
  • This paper presents a sun-synchronous orbit design which effectuvely includes the requirements derived from spacecraft to ground station contact and spacecraft to target image accessibility. For this purpose, operation parameters of multiple spacecraft are defined as Contact Overlap, Contact Overlap Gap, Access Overlap, Access Overlap Gap. These parameters are used to form a Figure of Merit that reflects the operational requirements. The Figure of Merit is optimized to increase the efficiency of operating multiple spacecraft in constellation and is used to determine the operational orbit of each spacecraft that constitutes the constellation.

Generation Dispatch Algorithm Applying a Simulation Based Optimization Method (시뮬레이션 기반 최적화 기법을 적용한 발전력 재분배 알고리즘)

  • Kang, Sang-Gyun;Song, Hwachang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.40-45
    • /
    • 2014
  • This paper suggests the optimal generation dispatch algorithm for ensuring voltage stability margin considering high wind energy injection. Generally, with wind generation being installed into the power system, we would have to consider several factors such as the voltage stability margin because wind turbine generators are mostly induction machines. If the proportion of wind generation increases in the power system increases this would affect the overall stability of the system including the voltage stability. This paper considers a specific system that is composed of two areas: area 1 and area 2. It is assumed that generation cost in area 1 is relatively higher than that in area 2. From an economic point of view generation in area 1 should be decreased, however, in the stability point of view the generation in area 2 should be decreased. Since the power system is a nonlinear system, it is very difficult to find the optimal solution and the genetic algorithm is adopted to solve the objective function that is composed of a cost function and a function concerned with voltage stability constraints. For the simulations, the New England system was selected. The algorithm is implemented and Python 2.5.