• Title/Summary/Keyword: 비선형 마찰

Search Result 284, Processing Time 0.023 seconds

A Comparative Study on Skid Resistance Performance Evaluation Methods for Maintenance of Skid Resistance Pavement (미끄럼방지포장 유지관리를 위한 미끄럼저항 성능평가방법 비교 연구)

  • Hyun-Woo Cho;Sang-Kyun Noh;Bong-Chun Lee;Yoon-Seok Chung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.79-85
    • /
    • 2023
  • Skid resistance pavement is an accessory to the road and is a facility for the safe driving of cars by increasing the skid resistance of road pavement. In particular, in bad weather conditions such as snow, rain, and black ice, the skid resistance performance of skid resistance pavement greatly affects the safety of road traffic and drivers. However, BPT(British Pendulum Tester) has a test area of only 0.009 m2, making it difficult to represent the overall packaging surface. A reliable method of evaluating slip resistance performance is needed for maintaining non-slip packaging. In this study, the conventional BPT test and the skid resistance performance evaluation method of the PFT(Pavement Friction Tester) and µGT(Micro Grip Tester) tests were compared through guidelines and standard investigations and applied to the field skid resistance performance evaluation. In addition, skid resistance pavement with different skid resistance performance was installed at the test-bed and actual road demonstration sites to compare BPN(British Pendulum Number), SN(Skid Number), GN(Grip Number), and to derive correlations for each performance evaluation method. As a result of the experiment, SN and GN showed similar skid resistance performance, and the GN value was derived similar to BPN × 0.01.

Stress dissipation characteristics of four implant thread designs evaluated by 3D finite element modeling (4종 임플란트 나사산 디자인의 응력분산 특성에 대한 3차원 유한요소해석 연구)

  • Nam, Ok-Hyun;Yu, Won-Jae;Kyung, Hee-Moon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • Purpose: The aim was to investigate the effect of implant thread designs on the stress dissipation of the implant. Materials and methods: The threads evaluated in this study included the V-shaped, buttress, reverse buttress, and square-shaped threads, which were of the same size (depth). Building four different implant/bone complexes each consisting of an implant with one of the 4 different threads on its cylindrical body ($4.1mm{\times}10mm$), a force of 100 N was applied onto the top of implant abutment at $30^{\circ}$ with the implant axis. In order to simulate different osseointegration stages at the implant/bone interfaces, a nonlinear contact condition was used to simulate immature osseointegration and a bonding condition for mature osseointegration states. Results: Stress distribution pattern around the implant differed depending on the osseointegration states. Stress levels as well as the differences in the stress between the analysis models (with different threads) were higher in the case of the immature osseointegration state. Both the stress levels and the differences between analysis models became lower at the completely osseointegrated state. Stress dissipation characteristics of the V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration. These results indicated that implant thread design may have biomechanical impact on the implant bed bone until the osseointegration process has been finished. Conclusion: The stress dissipation characteristics of V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration.

Preliminary Study on the Development of a Performance Based Design Platform of Vertical Breakwater against Seismic Activity - Centering on the Weakened Shear Modulus of Soil as Shear Waves Go On (직립식 방파제 성능기반 내진 설계 Platform 개발을 위한 기초연구 - 전단파 횟수 누적에 따른 지반 강도 감소를 중심으로)

  • Choi, Jin Gyu;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.306-318
    • /
    • 2018
  • In order to evaluate the seismic capacity of massive vertical type breakwaters which have intensively been deployed along the coast of South Korea over the last two decades, we carry out the preliminary numerical simulation against the PoHang, GyeongJu, Hachinohe 1, Hachinohe 2, Ofunato, and artificial seismic waves based on the measured time series of ground acceleration. Numerical result shows that significant sliding can be resulted in once non-negligible portion of seismic energy is shifted toward the longer period during its propagation process toward the ground surface in a form of shear wave. It is well known that during these propagation process, shear waves due to the seismic activity would be amplified, and non-negligible portion of seismic energy be shifted toward the longer period. Among these, the shift of seismic energy toward the longer period is induced by the viscosity and internal friction intrinsic in the soil. On the other hand, the amplification of shear waves can be attributed to the fact that the shear modulus is getting smaller toward the ground surface following the descending effective stress toward the ground surface. And the weakened intensity of soil as the number of attacking shear waves are accumulated can also contribute these phenomenon (Das, 1993). In this rationale, we constitute the numerical model using the model by Hardin and Drnevich (1972) for the weakened shear modulus as shear waves go on, and shear wave equation, in the numerical integration of which $Newmark-{\beta}$ method and Modified Newton-Raphson method are evoked to take nonlinear stress-strain relationship into account. It is shown that the numerical model proposed in this study could duplicate the well known features of seismic shear waves such as that a great deal of probability mass is shifted toward the larger amplitude and longer period when shear waves propagate toward the ground surface.

Variations of the Wind-generated Wave Characteristics around the Kyung-gi Bay, Korea (경기만 근해에서 풍파의 특성 변화)

  • Kang, Ki-Ryong;Hyun, Yu-Kyung;Lee, Sang-Ryong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.251-261
    • /
    • 2007
  • The wind-wave interaction around the Kyung-gi Bay, Korea, was studied using the observed data from ocean buoy at DeuckJeuck-Do from Jan. to Dec., 2005, and from waverider data at KeuckYeulBee-Do on Mar. 19-26 and May 23-28, 2005. Wind-driven surface waves and wave-driven wind speed decrease were estimated from the ocean buoy data, and the characteristics of wave spectrum response were also investigated from the waverider data for the wave developing and calm stages of sea surface, including the time series of spectrum pattern change, frequency trend of the maximum energy level and spectrum slope for the equilibrium state range. The wind speed difference between before and after considering the wave effect was about $2ms^{-1}$ (wind stress ${\sim}0.1Nm^{-2}$) for the wind speed range $5-10ms^{-1}$ and about $3ms^{-1}$ (wind stress ${\sim}0.4Nm^{-2}$) for the wind speed range $10-15ms^{-1}$. Correlation coefficient between wind and wave height was increased from 0.71 to 0.75 after the wave effect considered on the observed wind speed. When surface waves were generated by wind, the initial waves were short waves about 4-5 sec in period and become in gradual longer period waves about 9-10 sec. For the developed wave, the frequency of maximum energy was showed a constant value taking 6-7 hours to reach at the state. The spectrum slope for the equilibrium state range varied with an amplitude in the initial stage of wave developing, however it finally became a constant value 4.11. Linear correlation between the frictional velocity and wave spectrum for each frequency showed a trend of higher correlation coefficient at the frequency of the maximum energy level. In average, the correlation coefficients were 0.80 and 0.82 for the frequencies 0.30 Hz and 0.35 Hz, respectively.