• Title/Summary/Keyword: 비선형 강성

Search Result 586, Processing Time 0.035 seconds

The Nonlinear Direct Spectrum Method Improving Application and Reliability of Existing Approximate Nonlinear Methods (기존 비선형약산법들의 신뢰성 개선을 위한 비선형직접스펙트럼법)

  • Kim, Jae-Ung;Kang, Pyeong-Doo;Jun, Dae-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.55-66
    • /
    • 2006
  • This paper considers the nonlinear direct spectrum method to estimate seismic performance of mixed building structures without iterative computations, given dynamic property $T_1$ from stiffness skeleton curve and nonlinear pseudo acceleration $A_{1y}/g$ and/or ductility ratio p from response spectrum. Nonlinear response history analysis has been performed and analysed with various earthquakes for evaluation of correctness and confidence of nonlinear direct spectrum method. The conclusions of this study are as follows; (1) Nonlinear direct spectrum method is considered as a practical method which is applicable to compute the structural initial elastic period and the yielding strength from stiffness skeleton owe and calculate the nonlinear maximum response of structure directly from nonlinear response spectrum. (2) The comparison of the analysis results from NDSM and NRHA showed that the average errors were less than 20% in about 3/4 of the analysis cases, and that the results obtained from NDSM turned out to be generally larger than those from NRHA.

The Effect of Nonlinear Fabric Bending Rigidity on the Cantilever Test - with Image Analysis- (이미지 분석법을 사용한 직물의 비선형 외팔보 굽힘 연구)

  • 서문호;장보은
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.299-300
    • /
    • 2003
  • 직물은 유연하여 외력에 의해 쉽게 굽힘, 비틀림 등의 변형이 일어난다. 이러한 특성 중 직물의 굽힘은 태, 봉제성, 드레이프성 등의 중요 인자로서 지금까지 여러 연구들이 직물의 구조에 관련하여 굽힘강성을 분석하려는 시도가 계속되어 왔다. 이러한 연구의 최초의 시도로서 1930년대 Peirce가 직물을 선형탄성체로 가정한 후 외팔보법을 적용시켜 굽힘길이로 굽힘강성을 나타내었으며[l] 현재까지도 이 시험법이 시행되어 오고 있다. (중략)

  • PDF

Direct Inelastic Design of Reinforced Concrete Members Using Strut-and-Tie Model (스트럿-타이 모델을 이용한 철근콘크리트 부재의 직접 비탄성 설계)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.345-356
    • /
    • 2008
  • In the previous study, direct inelastic strut-and-tie model (DISTM) was developed to perform inelastic design of reinforced concrete members by using linear analysis for their secant stiffness. In the present study, for convenience in design practice, the DISTM was further simplified so that inelastic design of reinforced concrete members can be performed by a run of linear analysis, without using iterative calculations. In the simplified direct inelastic strut-and-tie model (S-DISTM), a reinforced concrete member is idealized with compression strut of concrete and tension tie of reinforcing bars. For the strut and tie elements, elastic stiffness or secant stiffness is used according to the design strategy intended by engineer. To define the failure criteria of the strut and tie elements, concrete crushing and reinforcing bar fracture were considered. The proposed method was applied to inelastic design of various reinforced concrete members including deep beam, coupling beam, and shear wall. The design results were compared with the properties and the deformation capacities of the test specimens.

A Three-Dimensional Dynamic Analysis of Towed Systems Part 1. A Mathematical Formulation (수중예인시스템의 3차원 동역학 해석 1부: 수학모델 정식화)

  • Hong, Sub;Hong, Seuk-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.16-22
    • /
    • 1994
  • 수중 예인시스템의 동적 거동 해석을 위한 3차원 비선형 수학모델이 제시되었다. 수중 예인체는 세장보로 이상화되었으며, 보요소의 굽임강성 및 비틈강성의 영향이 수학모델에 포함되었다. 축류가 지배적인 비정상 상대유동장내의 세장예인체의 횡방향 운동에 따른 유체동역학적 반력과 기진력에 관한 비선형 3차원 수학 정식화가 수행되었다.

  • PDF

Non-linear Analysis of Laminated Composite Plates with Multi-directional Stiffness Degradation (강성 저하된 적층복합판의 비선형 해석)

  • Han, Sung-Cheon;Park, Weon-Tae;Lee, Won-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2661-2669
    • /
    • 2010
  • In this study, a finite element formulation based first-order shear deformation theory is developed for non-linear behaviors of laminated composite plates containing matrix cracking. The multi-directional stiffness degradation is developed for adopting the stiffness variation induced from matrix cracking, which is proposed by Duan and Yao. The matrix cracking can be expressed in terms of the variation of material properties, such as Young's modulus, shear modulus and Possion ratio of plates, and sequently it is possible to predict the variation of the local stiffness. Using the assumed natural strain method, the present shell element generates neither membrane nor shear locking behavior. Numerical examples demonstrate that the present element behaves quite satisfactorily either for the linear or geometrical nonlinear analysis of laminated composite plates. The results of laminated composite plates with matrix cracking may be the benchmark test for the non-linear analysis of damaged laminated composite plates.

Automatic System Development by Using Friction Force and Stiffness with Nonlinear Characteristic (비선형 마찰과 강성을 이용한 자동화 시스템 개발)

  • Lee, Jeong-Wook;Cho, Yong-Hee;Chang, Yong-Hoon;Kim, Jung-Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1055-1063
    • /
    • 2004
  • In this study, we developed an automatic veneer sorting system controlled by nonlinear friction and nonlinear stiffness. With these nonlinear characteristics, it was difficult to analysis and to control the system in the fast. However it is necessary to consider nonlinear characteristics to satisfy accurate and rapid control demand in these days. We used not only nonlinear friction but also nonlinear stiffness and combined both to control the system. An experimental device was designed with 4 AC servo-motors and 2 Sensors. Through a series of experiment, we found nonlinear friction characteristics among roller versus veneer and veneer versus veneer and nonlinear stiffness characteristics with stacked veneers. Finally, we showed that the proposed control algorithm was very effective for veneer sorting system with nonlinear friction and stiffness.

Nonlinear Analysis of Precast Concrete Wall Structures (프리캐스트 콘크리트 판구조의 비선형 해석)

  • 서수연;이원호;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.189-196
    • /
    • 2000
  • The objective of this paper is to propose an analysis technique to predict the behavior of PC wall structures subjected to cyclic load. While PC wall panel is idealized by finite elements, the joints at which PC walls are connected each other are idealized by nonlinear spring elements. Axial and shear spring elements are developed for simulating shear, compression and tension behaviors of joints. The strength and stiffness of each spring elements we presented from the previous research results and incorporated into the computer program of DRAIN-2DX. The proposed analysis technique is evaluated by analyzing specimens previously tested and comparing with those. On the strength, stiffness, energy dissipation and lateral drift, analytical results show good agreements with test results. This means the proposed technique is effective to predict the response of the PC wall structures.

  • PDF

An Efficient Method for Calculating Nonlinear Stiffness of the Progressive Multi-Leaf Spring (Progressive Multi-Leaf Spring의 비선형 강성해석 법)

  • Kim, Sung-Soo;Moon, Won-Kyu;Yoo, Young-Il
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.413-419
    • /
    • 2000
  • An efficient method for calculating the nonlinear stiffness of the Progressive Multi-Leaf Spring is developed and evaluated. It utilizes the interaction between the main and help spring that induces the nonlinearity. The main and the help springs are modeled as multi-leaf cantilever beams, and, then, they are integrated as one by connecting the two models for each side of the Progressive Multi-Leaf Spring at the center-bolt. The results from the developed model are evaluated by use of the commercial FEA program, ABAQUS. The nonlinear spring coefficients calculated by FEM analysis yield the numbers very close to the numbers calculated for the spring coefficients by used of the developed method. From the comparative evaluations, the developed method is accurate enough and very efficient in calculation time for evaluating the nonlinear spring property of the Progressive Multi-Leaf Spring.

  • PDF

Effects of Nonlinear Motions due to Abutment-Soil Interaction upon Seismic Responses of Multi-Span Simply Supported Bridges (비선형 교대운동이 교량구조물의 지진응답에 미치는 영향분석)

  • 김상효;마호성;이상우;경규혁
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.17-24
    • /
    • 2002
  • Dynamic behaviors of a bridge system with several simple spans are evaluated to examine the effects of nonlinear abutment motions upon the seismic responses of the bridge. The idealized mechanical model for the whole bridge system is developed by adopting the multi-degree-of-freedom system, which can consider various influential components. To compare the results, both linear and nonlinear abutment-backfill models are prepared. The linear system has the constant abutment stiffness, and the nonlinear system has the nonlinear stiffness considering the abutment stiffness degradation due to the abutment-soil interaction. From simulation results, the nonlinear abutment motion is found to have an important influence upon the global bridge motions. Maximum relative distances between adjacent vibration units are found to be larger than those found from the linear system. In particular, maximum relative distances at the location with the highest possibility of unseating failure are increased up to about 30% in the nonlinear system. The effects of nonlinear behavior of an abutment on the bridge seismic behaviors are also increased as the number of span increase. Therefore, it can be concluded that the abutment-soil interaction should be considered in the seismic analysis of the bridge system.