• Title/Summary/Keyword: 비선형응답

Search Result 558, Processing Time 0.024 seconds

Mathematical Hysteretic Model of RC Frame Elements (철근 콘크리트 프레임 요소의 수리적(數理的)인 이역(履歷)모델)

  • Chung, Young Soo;Kim, Se Yoll
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.19-27
    • /
    • 1992
  • An enhanced version of the Roufaiel and Meyer model is developed for the simulation of the hysteretic response of reinforced concrete members. This model takes into account the finite size of plastic regions and considers the effects of stiffness degradation, strength deterioration, shear and axial force. A significant improvement is the way in which strength deterioration is simulated during inelastic cyclic loadings. The accuracy of this model has been demonstrated by analytically reproducing numerous laboratory experimental load-deformation curves.

  • PDF

Improve Real-Time Detection Method of Current for Single-Phase Active Power Filters (개선된 순시전류제어 기법을 적용한 단상 능동전력 필터)

  • Choi, Jae-Hyuk;You, Won-Ho;Ko, Sung-Hun;Kwon, Huyk-Dae;Lee, Sung-Yong;Cheon, Chil-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.955_956
    • /
    • 2009
  • 계통의 전력품질을 향상시키기 위해서는 비선형부하로 인해 발생되는 무효전력을 보상해야 한다. 이러한 무효전력을 보상하는 알고리즘에서 지령치를 생성하기 위해 평균전력 또는 순시전력을 이용한다. 평균전력을 이용하는 방법은 매 한주기마다 평균전력을 계산하여 지령치를 생성하는 방법으로 필연적으로 지연시간이 발생하게 된다. 이에 반해 순시전력을 이용하는 방법은 매 스위칭 순간에 무효전력을 보상할 수 있어 시스템 응답속도가 빠른 장점을 가진다. 또한 유효전력과 무효전력을 계산하기 위해 디지털 필터를 이용하게 되면 회로구성이 간편하고 제어가 용이한 장점이 있다. 본 논문에서는 계통의 전력품질을 개선시키기 위해 1개의 LPF(Low Pass Filter)와 2개의 곱셈블럭으로 구성되는 디지털 필터를 사용하였다. 이의 유용성을 확인하기 위해 단상 능동전력 필터(active power filter)에 적용하여 시뮬레이션을 수행하였다.

  • PDF

On the Damping of A Shock Absorption Device Composed of Disk Spring Stacks (디스크 스프링의 적층 배열에 따른 완충장치의 감쇠에 관한 연구)

  • Choi, Myung-Jin;Ko, Seok-Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.46-51
    • /
    • 2008
  • The damping of a shock absorption device composed of nonlinear disk spring stacks and rubber rings was investigated. Friction forces of rubber rings and hysteresis of disk springs were obtained experimentally. The hysteresis curves of several types of disk spring stacks were approximated, from which the energy dissipated was estimated. Based upon the friction force and the energy dissipated, 4 damping models were presented and shock responses of the damping models were investigated. The hysteresis of disk spring is more meaningful than the friction of the rubber ring for the damping. For practical use, equivalent viscous damping model for total energy dissipated per cycle was suggested.

  • PDF

Theoretical Analysis of Digital PLL (디지털 위상 고정 루프의 이론적 해석)

  • 박영철;김재형;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.5
    • /
    • pp.460-471
    • /
    • 1992
  • By setting a new model to describe the time-discontinuous operation of PLL loop which used tri-state and sample-hold method, the stability analysis of nonlinear PLL has been performed in z-domain and the state equations for the transient response has been introduced. Until now, the lin-ear analysis by approximation of time-discontinuous to time-continuous operation had not found then stable region of time-discontinuous digital PLL exactly. However, the analysis In z-domain by the new model has been found the unstable region where the time-continuous analysis had have not. 1'herefore the limit of loop coefficient has been computed to design digital PLL optimally.

  • PDF

Design of Viscoelastic Dampers to Meet Performance Objectives (성능목표를 달성하기 위한 점탄성 감쇠기의 설계)

  • 김진구;최현훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.329-339
    • /
    • 2002
  • This research presents a systematic design procedure for supplemental viscoelastic dampers required to satisfy the given performance objectives using capacity spectrum method. To obtain required damper size, the amount of supplemental damping was computed from effective damping minus equivalent damping and inherent damping of structure. In the case of viscoelastic damper, iterative procedure is required because of the inherent stiffness of the damper. To verify the design method proposed in this study, parametric studies were performed for single degree of freedom systems with design variables. The method was also applied to a 10-story steel framed structure and the earthquake responses were obtained. According to time history analysis result the controlled displacements turned out to be close to the target displacement regardless of the design parameters.

Implementation of a PRML Detection for Asymmetric High-density Optical Storage System (고밀도 비선형 광 저장장치를 위한 새로운 부분응답 최대유사도 신호 검출기 구현)

  • Lee, Kyu-Suk;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1052-1057
    • /
    • 2006
  • The implement the adaptive partial response maximum likelihood (PRML) detector with tilt analyzer for asymmetric high-density optical storage system. For the estimation of disc tilt, we exploit spc patterns in each data frame. Because of using the ROM table to renew the coefficients of equalizer and reference values of branches, the complexity of the hardware is reduced. The proposed PRML has been designed and verified by VerilogHDL and synthesized by the Synopsys Design Compiler with Hynix $0.35{\mu}m$ STD cell library. In the result, the total gate count is 35K, and the maximum operating frequency is 140MHz.

A Finite Impulse Response Fixed-lag Smoother for Discrete-time Nonlinear Systems (이산 비선형 시스템에 대한 유한 임펄스 응답 고정 시간 지연 평활기)

  • Kwon, Bo-Kyu;Han, Sekyung;Han, Soohee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.807-810
    • /
    • 2015
  • In this paper, a finite impulse response(FIR) fixed-lag smoother is proposed for discrete-time nonlinear systems. If the actual state trajectory is sufficiently close to the nominal state trajectory, the nonlinear system model can be divided into two parts: The error-state model and the nominal model. The error state can be estimated by adapting the optimal time-varying FIR smoother to the error-state model, and the nominal state can be obtained directly from the nominal trajectory model. Moreover, in order to obtain more robust estimates, the linearization errors are considered as a linear function of the estimation errors. Since the proposed estimator has an FIR structure, the proposed smoother can be expected to have better estimation performance than the IIR-structured estimators in terms of robustness and fast convergence. Additionally the proposed method can give a more general solution than the optimal FIR filtering approach, since the optimal FIR smoother is reduced to the optimal FIR filter by setting the fixed-lag size as zero. To illustrate the performance of the proposed method, simulation results are presented by comparing the method with an optimal FIR filtering approach and linearized Kalman filter.

Nonlinear Adaptive Control and Stability Analysis for Improving Transient Response of Photovoltaic Converter Systems (태양광 컨버터 시스템의 과도응답 개선을 위한 비선형 적응제어 및 안정성 해석)

  • Cho, Hyun-Cheol;Yoo, Su-Bok;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1175-1183
    • /
    • 2009
  • In photovoltaic(PV) generator systems, DC-DC converters are significantly considered for control system performance in power quality point of view. This paper presents a novel adaptive control method for DC-DC converters applied in PV generator systems. First, we derive a state-space average model of the converter system and then propose a reset control methodology to enhance transient response performance for time-varying PV systems. For estimating parameters of a reset control, a gradient descent optimization is utilized and an adjustment rule of them are derived respectively. An objective of the optimization is that characteristic equation of an augmented system model which is formed with an converter system model and an reset control is to trace a predefined polynomial given as a reference characteristic model. Next, we accomplish stability analysis by means of a well-known Lyapunov theory for nonlinear converter systems including time-varying voltage excitation from a PV generator. Numerical simulation demonstrates reliability of our control methodology and its superiority by comparison to a traditional control strategy.

Probabilistic Seismic Damage Assessment of Structures (구조물의 확률론적 지진손상평가)

  • Lee, Seong Lo;Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1097-1104
    • /
    • 1994
  • The external loads applied to a real structure may cause a severe damage and may eventually lead to total failure. It is thus the requirement that the structure must be designed to fulfil its safe function under any anticipated loads and must have the desired level of safety. The purpose of the present study is to propose a method of damage accumulation under seismic loadings to utilize it in the safety assessment of a reinforced concrete structure. To this end, the nonlinear hysteretic behavior of reinforced concrete structures is first modeled and the equivalent linearization technique is employed to solve numerically the probabilistic characteristics of response under random seismic loadings.

  • PDF

Dynamic analysis of magnetic head slider at ultra low clearance (마그네틱 헤드 슬라이더의 극소 공기막에 대한 동특성 해석)

  • 장인배;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1487-1494
    • /
    • 1990
  • In this paper the dynamic characteristics of self acting air lubricated slider bearing of hard disk/head system are investigated. The dynamic equations of magnetic head mechanism considering both parallel and pitch motion and the time dependent modified Reynolds equation are analyzed and the dynamic pressure distribution of air film is numerically calculated in frequency domain by small perturbation method and finite difference scheme with variable grid. The dynamic response of the slider spacing is obtained accordingly as the moving recording surface vibrates in parallel mode.