• Title/Summary/Keyword: 비선형거동특성

Search Result 609, Processing Time 0.027 seconds

Fracture Analysis on Crack Propagation of RC Frame Structures due to Extreme Loadings (극한 진동에 의한 철근콘크리트 뼈대구조물에 균열전파의 파괴 역학적 특성 연구)

  • Jeong, Jae-Pyong;Lee, Myung-Gon;Kim, Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.191-199
    • /
    • 2003
  • The inelastic response of many structural steel and reinforced concrete structures subject to extreme loadings can be characterized by elastoplastic behaviors. Although excursion beyond the elastic range is usually not permitted under normal conditions of service, the extent of permanent damage a structure may sustain when subjected to extreme conditions, such as severe blast or earthquake loading, is frequently of interest to the engineer. A blast is usually the result of an explosion defined as a "sudden expansion". This paper discusses the basic concept that defines blast loadings on structures and corresponding elastoplastic structural response (displacement, velocity, and acceleration) and try to explain a crack propagation of concrete in sudden expansion. According to nonlinear finite element analysis, the crack forms of static and dynamic states displayed different in RC structural members. This paper also provides useful data for the dynamic fracture analysis of RC frame structures.

Explicit Nonlinear Finite Element Analysis for Flexural/Shear Behavior of Perfobond FRP-Concrete Composite Beam (퍼포본드 FRP-콘크리트 합성보의 휨/전단거동에 관한 외연적 비선형 유한요소해석 연구)

  • Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.771-776
    • /
    • 2020
  • In this study, the flexural/shear behavior characteristics of perfobond FRP-concrete composite beams using an FRP plate with perforated webs as formwork and reinforcement are analyzed through an analytical method. Compared with the existing experimental results, we have proved its usefulness and use it in future practice. When the nonlinearity is very large in this case, the nonlinear finite element analysis by an explicit method will be effective. The concrete damage plasticity (CDP) model adopted in this study is considered to be able to adequately simulate the nonlinear behavior of concrete, and the determination of several variable factors required in the model is compared with the experimental results and values used in the study. This recommendation will require review and adjustment for more diverse cases. The effect of the perfobond of the composite beam with perforated web is considered to be somewhat effective in terms of securing the initial stiffness, but in the case of the apex, it is considered that the cross-sectional loss and the effect of improving the bonding force should be properly arranged. The contact problem, such as slipping of the FRP plate and concrete, is considered to be one of the reasons that the initial stiffness is slightly larger than the test result, and the slightly difference from the experimental results is attributed to the separation problem between concrete and FRP after the peak.

Measurements of Permeability Characteristics for Unsaturated Weathered Soils (불포화 풍화토의 투수특성 측정)

  • Ryu, Ji-Hyeop
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.133-142
    • /
    • 2000
  • Series of tests were carried out to study permeability characteristics of unsaturated soils. The weathered soils taken from Inju, Sungwhan, and Kuri, were selected to have different amount of fine grained soils in order to find a possible correlation between the unsaturated permeability behavior and fine grained soils contents. Measurements of permeability for unsaturated soils were performed with a newly developed apparatus, which modeled after Klute's apparatus(1965a). The apparatus was designed to measure volumetric water content and permeability by applying incremental suction pressure. Permeability and volumetric water content of unsaturated soils generally decreased as density of the soil increased. The relationship between volumetric water content and permeability was not related to the fine grained soils contents because the plots scattered widely. By comparing volumetric water content with permeability, empirical parameters A and B could be determined, which made to be possible to predict unsaturated permeability from soil-moisture characteristics.

  • PDF

Introduction to Thermoacoustic Models for Combustion Instability Prediction Using Flame Transfer Function (화염 전달 함수를 이용한 열음향 연소 불안정 해석 모델 소개)

  • Kim, Dae-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.98-106
    • /
    • 2011
  • This paper reviews the state-of-the-art thermoacoustic(TA) modeling techniques and research trend to predict major parameters determining combustion instabilities in lean premixed gas turbine combustors. Linear TA modeling results give us an information on eigenfrequencies and initial growth rate of the instabilities. For the prediction, linear relation equation between acoustic waves and heat release oscillations should be derived in the determined system. Key information for this analysis is to determine the heat release fluctuations in the combustor, which is typically obtained by using n-${\tau}$ function from flame transfer function measurements and/or predictions. Great advancement in the linear TA modeling has been made over a couple of decades, and some successful prediction results have been reported in actual gas turbine combustors. However nonlinear TA model developments which are required to analyze nonlinear system behaviors such as limit cycle saturation and transition phenomena are still limited in a very simple system. In order to fully understand combustion instabilities in a complicated real system, nonlinear flame dynamics and acoustic wave interaction with nonlinear system boundary conditions should be explained from the nonlinear TA model developments.

Stability Analysis of Waste Landfill Using Multi-interface Element Numerical Method (복합 경계면요소 수치해석에 의한 매립지 안정성 해석)

  • 장연수;김홍석
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.29-38
    • /
    • 2004
  • A finite element nonlinear stress-deformation model with multi-interface element is applied to the stability analysis of waste landfill slope. Strength parameters of waste and geosynthetic materials are obtained from the triaxial test of waste and the direct shear test of geosynthetics, respectively. The landfill models used for the numerical models are fit to regulations of the Korean waste management law. The results of the strength tests showed linear behavior for the waste and nonlinear behavior for the eosynthectic materials. The stability analysis with multi-interface element for the geosynthetic materials in the liner system showed large shear stress and slippage at the boundary of the foundation and the slope of the waste fill. This analysis verified the necessity of multi-interface analysis for waste landfills with composite liners.

Response Characters of Bridge Adopting StLRB (StLRB 지진격리장치를 적용한 교량의 거동특성과 비교분석)

  • Choi, Seung-Ho;Han, Kyoung-Bong;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.139-146
    • /
    • 2004
  • In this paper, the seismic analysis and the modeling techniques have been introduced for seismic performances assessment, when seismic isolation bearings are applied to a real bridge. Nonlinear time-history analysis is carried out using finite element analysis program. El Centro earthquake(1940, N00W) used as earthquake ground excitations. The seismic response of seismically isolated bridge is compared with that of a bridge using conventional Pot Bearings, after obtaining the displacements of the deck, the deformations of the piers, shear forces and moments of the bottoms of the piers. The analytical analysis results show that seismic isolation bearing, especially seismic isolation bearings with sliding mechanism, could reduce earthquake forces.

A Parameter Analysis for Pull-out and Push-out Behavior of Steel Pipe Pile Cap with the Open Type Perfobond (개방형 퍼포본드로 보강된 강관말뚝머리의 인발 및 압발거동에 관한 매개변수 해석)

  • Kim, Young-Ho;Kang, Jae-Yoon;Yoo, Seung-Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.661-669
    • /
    • 2009
  • Various kinds of shear connectors such as headed stud, channel, perforated steel plate and others are commonly used to transfer stress and conduct composite performance in steel concrete composite structures, and many researches have been conducted to improve the characteristics of different types of shear connectors. It is focused in this study on the pull-out and pushout performance of steel pipe pile cap with the open type perfobond for the composite connection to the spread footing. A parameter analysis was conducted, using ABAQUS, a nonlinear finite element analysis program, to obtain data for determining the characteristics of the structure and to allow various parametric analyses of steel pipe cap with the open perfobond.

Experimental and Analytical Studies on the Non-Linear behaviors of Pre-Stressed Steel H-Beams (프리스트레스트 H형강 거더의 비선형 거동에 대한 실험적 및 이론적 연구)

  • Kim, Moon-Young;Kim, Nak-Kyung;Oh, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.359-366
    • /
    • 2019
  • Experimental and analytical studies on the behavioral characteristics of a pre-stressed (PS) steel girder are conducted to investigate the effects of deviators on the non-linear inelastic properties of the PS system. In this regard, 4 test specimens consisting of a steel H-beam, a straight cable with eccentricity, anchorages, and deviators are built and failure tests are performed under two-point loading. In addition, in-plane elastic deformation theories for the PS system without a deviator, and with three deviators at regular intervals are analytically formulated and solved using a symbolic calculation technique. To verify the validity of the experimental and the proposed analytical theories, the results obtained using FEM models composed of beam elements, rigid beam elements, and truss cable elements, are compared to the experimental results and the analytical solutions. As a result, it is determined that externally installed un-bonded deviators inhibit flexural deformation of the deformed beam to such an extent that their elastic stiffness, and failure strength are significantly improved compared to those of the PS system without deviators.

A Study on Seismic Performance Evaluation of Tunnel to Considering Material Nonlinearity (재료의 비선형성을 고려한 터널의 내진성능평가에 관한 연구)

  • Choi, Byoungil;Ha, Myungho;Noh, Euncheol;Park, Sihyun;Kang, Gichun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.92-102
    • /
    • 2022
  • Various numerical analysis models can be used to evaluate the behavior characteristics of tunnel facilities which are representative underground structures. In general, the Mohr-Coulomb model, which is most often used for numerical analysis, is an elastic-perfect plastic behavior model. And the deformation characteristics are the same during the load increase-load reduction phase. So there is a problem that the displacement may appear different from the field situation in the case of excavation analysis. In contrast, the HS-small strain stability model has a wide range of applications for each ground. And it is known that soil deformation characteristics can be analyzed according to field conditions by enabling input of initial elastic modulus and nonlinear curve parameter and so on. However, civil engineers are having difficulty using nonlinear models that can apply material nonlinear properties due to difficulties in estimating ground property coefficients. In this study, the necessity of rational model selection was reviewed by comparing the results of seismic performance evaluation using the Mohr-Coulomb model, which civil engineers generally apply for numerical analysis of tunnels, and the HS Small strain Stiffness model, which can consider ground nonlinearity.

Dynamic Buckling Characteristics of Arch Structures by Sinusoidal Harmonic Excitation (정현형 조화하중에 의한 아치 구조물의 동적 좌굴 특성에 관한 연구)

  • 윤태영;김승덕
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.67-74
    • /
    • 2004
  • The dynamic instability for snapping phenomena has been studied by many researchers. Few paper deal with the dynamic buckling under the load with periodic characteristics, and the behavior under periodic excitation is expected the different behavior against STEP excitation. We investigate the fundamental mechanisms of the dynamic instability when the sinusoidal shaped arch structures are subjected to sinusoidal harmonic excitation with pin-ends. By using Newmark- β method, we can get the nonlinear displacement response, and using this analyze characteristics of the dynamic instability through the running response spectrum by FFT(Fast Fourier Transform).