• Title/Summary/Keyword: 비선형거동특성

Search Result 609, Processing Time 0.027 seconds

Evaluation of Strength Reduction Factors using Smooth Hysteretic Behavior (완만한 곡선형 이력거동을 이용한 강도감소계수의 평가)

  • Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.49-60
    • /
    • 2010
  • The actual hysteretic behavior of structural elements and systems is smooth. Smooth hysteretic behavior is more representative of actual behavior than bi-linear or piece-wise linear stiffness degrading models. The strength reduction factor in seismic design is used to reduce the elastic strength demand to design levels. In this study, the effect of smoothness on the strength reduction factor is evaluated for several smooth hysteretic systems subjected to near-fault and far-fault earthquakes. For design purposes, a simple expression of the strength reduction factor considering hysteretic smoothness and earthquake characteristics, represented as near-fault and far-fault earthquakes, is proposed. The strength reduction factors calculated by the proposed simple formulation are more similar to the factors directly obtained from inelastic response spectrum analyses than those calculated by several existing formulas.

Numerical Study of Nonlinear Acoustic Damping Induced by Acoustic Resonators in a Rocket Combustor (로켓엔진 연소기내 공명기에 의한 비선형 음향감쇠에 관한 수치해석적 연구)

  • Sohn, Chae-Hoon;Park, I-Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • Nonlinear acoustic damping of a half-wave acoustic resonator in a rocket combustor is investigated numerically adopting a nonlinear acoustic analysis. First, in a baseline chamber without any resonators, acoustic behavior is investigated over the wide range of acoustic amplitude from 80 dB to 150 dB. Damping factor increases nonlinearly with acoustic amplitude and nonlinearity becomes appreciable at acoustic amplitude above 125 dB. Next, damping effect of a half-wave resonator is investigated. It is found that nonlinear acoustic excitation does not affect optimum tuning condition of the resonator, which is derived from linear acoustics. A half-wave resonator is effective even for acoustic damping of high-amplitude pressure oscillation, but its function of acoustic damper is relatively weakened compared with the case of linear acoustic excitation.

Suggestion of Analytical Technique Applying Multi-Linear Models for Analysis of Skin Shear Behavior of Tension-Type Ground Anchors in Weathered Soil (풍화토 정착 인장형 앵커에서 주면전단거동분석을 위한 다중선형모델 적용 해석기법의 제안)

  • Jeong, Hyeon-Sik;Lee, Yeong-Saeng
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.5-19
    • /
    • 2018
  • The characteristics of the skin shear stress distribution for the fixed length of the ground anchor are extremely nonlinear and the engineering mechanisms are complex relatively. So it is difficult to design the anchors simulating the actual behavior by considering various soil conditions and nonlinear behavior. Due to these limits, constant skin shear stress distributions for the whole fixed length of the ground anchor are usually assumed in the design for the sake of convenience. In this study, to assess the pull-out behavior of the tension-type ground anchors, the in-situ pull-out tests in weathered-soil conditions were carried out. Based on the test results, the skin shear behaviors for the fixed length of tension-type ground anchors were established and the multi-linear slip shear model predicting this behavior and an analytical technique applying this model were proposed. From the similarity between the results of the in-situ pull-out tests and those of the analytical technique, the applicability and availability of the multi-linear slip shear model and the proposed analytical technique were verified. The maximum shear stress was developed at the start point of the fixed length acting with the smaller load than the maximum pull-out load but the minimum shear stress was developed at the start point of the fixed length and the maximum shear stress was developed at the point apart from the start point of the fixed length after the maximum pull-out load.

Flexural Behavior of Composite HSB I-Girders in Positive Moment (HSB 강합성거더 정모멘트부 휨거동)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.377-388
    • /
    • 2010
  • The flexural behavior of composite HSB600 and HSB800 I-girders under a positive moment was investigated using the material non-linear moment-curvature analysis method. Three representative composite sections with different ductility properties were selected as the baseline sections in this study. Using these baseline sections, the moment-curvature program was verified by comparing the flexural strength and the moment-curvature curve obtained from the program with those obtained using the non-linear FE analysis of ABAQUS. In the FE analysis, the composite girders were modeled three-dimensionally with flanges, the web, and the concrete slab as thin shell elements, and initial imperfections and residual stresses were imposed on the FE model. In the moment-curvature and FE analyses, the 28-day compressive strength of the concrete slab was assumed to be 30-50 MPa, and the HSB600 and HSB800 steels were modeled as elasto-plastic strain-hardening materials, with the concrete as the CEB-FIP model. The effects of the ductility ratio of the composite girder, the type of steel, the compressive strength of the concrete deck, and the location of the plastic neutral axis on the flexural characteristics were analyzed.

Analytical Approach to Evaluate the Nonlinear Beahviors of One-way Concrete Slab Reinforced with CFRP Grid Reinforcements (CFRP 그리드 보강근을 적용한 1-방향 콘크리트 슬래브의 해석적 방법에 의한 비선형 거동 평가)

  • Cheon, Ju-Hyun;Kim, Kyung-Min;Shin, Hyun-Mock
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.218-225
    • /
    • 2021
  • The purpose of this study is to present a rational analytical method for predicting the behavioral characteristics from crack occurrence to fracture for a one-way CFRP grid reinforced concrete slab specimen. A total of four specimens were selected by Zhang et al.(2004) as the main experimental variables for CFRP grid amount, material properties and loading method. Analysis was performed through the Nonlinear Finite Element analysis program(RCAHEST), which applied the newly modified constitutive relational equations by the author. The mean and coefficient of variation for maximum moment from the experiment and analysis results was predicted 1.38 and 7 %. The mean and coefficient of variation for displacement corresponding maximum moment from the experiment and analysis results was predicted 1.41and 9.8 %. The prediction results for the behavioral characteristics from crack occurrence to fracture were verified and evaluated. It is judged that additional research is needed to secure various experimental results and to develop a more reliable analytical method.

Strength and Stiffness of Silty Sands with Different Overconsolidation Ratios and Water Contents (과압밀비와 함수비를 고려한 실트질 사질토 지반의 강도 및 변형 특성)

  • Kim Hyun-Ju;Lee Kyoung-Suk;Lee Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.53-64
    • /
    • 2005
  • For geotechnical design in practice, soils are, in general, assumed to behave as a linear elastic or perfect plastic material. More realistic geotechnical design, however, should take into account various factors that affect soil behavior in the field, such as non-linearity of stress-strain response, stress history, and water content. In this study, a series of laboratory tests including triaxial and resonant column tests were peformed with sands of various silt contents, relative densities, stress states, OCR and water contents. This aims at investigating effects of various factors that affect strength and stiffness of sands. From the results in this study, it is found that the effect of OCR is significant for the intermediate stress-strain range from the initial to failure, while it may be ignored for the initial stiffness and peak strength. For the effect of water content, it is observed that the initial elastic modulus decreases with increasing water content at lower confining stress and relative density At higher confining stresses, the effect of water content Is found to become small.

A Study on the Unstable behavior according to Lode and boundary condition of shelled space frame structure (쉘형 스페이스 프레임 구조물의 하중 및 경계조건에 따른 불안정 거동에 관한 연구)

  • Kim, Nam-Seok;Shon, Su-Deog;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.80-85
    • /
    • 2008
  • This paper investigate the structure instability properties of the shelled space frame structure. The large structure must have thin thickness for build the large space structure there fore structure instability review is important when we do structural design. The structure instability of the shelled structure accept it sensitively by varied conditions. This come to a nonlinear problem with be concomitant large deformation. In this study, it is compared unstable behavior according to lode and boundary condition of the shelled space frame structure through numerical method which considered geometrical nonlinear and grasped influence for the instability phenomenon and investigated the fundamental collapse mechanism.

  • PDF

Elasto-Plastic Analysis for Flexural Behavior of Externally Prestressed Composite Bridges (외부 프리스트레스트 강합성 교량의 탄소성 휨 거동해석)

  • Chung, Seung In;Ryu, Hyung Keun;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.59-68
    • /
    • 2003
  • Recent application researches on external pre-stressing method of composite structures have been conducted to explore its advantages. An external pre-stress could improve mechanical behavior and maintenance, and is economically efficient. In this paper, the Incremental Deformation Method (IDM) was proposed to analyze the elasto-plastic flexural behavior of externally pre-stressed composite bridge with consideration for the material's nonlinearity. This method was verified with experimental results.

A Study on the Seismic Response of a Non-earthquake Resistant RC Frame Using Inelastic Dynamic Analyses (비선형 동적 해석을 이용한 비내진 상세 RC 골조의 지진거동 특성 분석)

  • Jeong, Seong-Hoon;Lee, Kwang-Ho;Lee, Soo-Kueon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.381-388
    • /
    • 2010
  • In this study, characteristics of the seismic response of the non-earthquake resistant reinforced concrete (RC) frame were identified. The test building is designed to withstand only gravity loads and not in compliance with modern seismic codes. Smooth bars were utilized for the reinforcement. Members are provided with minimal amount of stirrups to withstand low levels of shear forces and the core concrete is virtually not confined. Columns are slender and more flexible than beams, and beam-column connections were built without stirrups. Through the modeling of an example RC frame, the feasibility of the fiber elementbased 3D nonlinear analysis method was investigated. Since the torsion is governed by the fundamental mode shape of the structure under dynamic loading, pushover analysis cannot predict torsional response accurately. Hence, dynamic response history analysis is a more appropriate analysis method to estimate the response of an asymmetric building. The latter method was shown to be accurate in representing global responses by the comparison of the analytical and experimental results. Analytical models without rigid links provided a good estimation of reduced stiffness and strength of the test structure due to bond-slip, by forming plastic hinges closer to the column ends. However, the absence of a proper model to represent the bond-slip poased the limitations on the current inelastic analysis schemes for the seismic analysis of buildings especially for those with round steel reinforcements. Thus, development of the appropriate bond-slip model is in need to achieve more accurate analysis.

인공위성 전개장치용 테잎힌지 특성 해석

  • Kim, Gyeong-Won;Im, Jae-Hyeok;Kim, Chang-Ho;Kim, Seon-Won;Kim, Seong-Hun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.167.1-167.1
    • /
    • 2012
  • 본 논문에서는 인공위성 전개장치용 테잎힌지 특성해석을 수행하고 그 결과에 대하여 분석하였다. 테잎힌지를 이용한 전개장치는 신뢰성이 높고, 형상이 매우 단순하며, 제작단가 또한 저렴하여 우주용 안테나 및 태양전지판에 널리 이용이 되고 있다. 테잎힌지를 이용한 전개장치의 전개특성은 테잎힌지 특성에 의하여 좌우가 되므로 안전성 있는 전개장치 설계를 수행하기 위해서는 가능한 정확한 해석이나 계산이 요구되어진다. 초기에는 쉘 이론등을 바탕으로 테잎힌지의 전개특성을 계산하는 식들이 연구되었으나 테잎힌지의 강한 비선형성 때문에 정확성이 많이 떨어지는 큰 단점이 존재하였다. 이후 많은 연구를 통하여 유한요소모델을 이용한 비선형해석을 통하여 비로소 정확한 전개특성을 해석할 수 있게 되었다. 본 논문에서는 다물체 동역학해석프로그램인 리커다인의 유연체 해석모듈을 이용하여 테잎힌지에 대한 특성해석을 수행하였다. 해석결과 신뢰성 있는 테잎힌지의 전개거동 확인 및 전개특성을 계산할 수 있었다.

  • PDF