• 제목/요약/키워드: 비모수적 예측

검색결과 108건 처리시간 0.024초

비모수적 이자율모형 추정과 시장위험가격 결정에 관한 연구 (The Nonparametric Estimation of Interest Rate Model and the Pricing of the Market Price of Interest Rate Risk)

  • 이필상;안성학
    • 재무관리연구
    • /
    • 제20권2호
    • /
    • pp.73-94
    • /
    • 2003
  • 일반적으로 이자율예측모형은 특정한 이자율 분포모형을 가정하여 모수적 방법에 의해 추정되었다. 그러나 특정한 분포모형을 가정한다는 것은 예측능력을 저하시킬 수 있다는 단점이 있다. 따라서 이자율변화에 특정한 분포모형을 가정하지 않는 비모수적 추정이 이자율 예측의 우월한 방법으로 제시되었다. 본 논문에서는 통화안정증권을 대상으로 이자율 예측 모형을 모수적 방법과 비모수적 방법으로 추정한다. 다음 이자율의 시장위험과 채권가격을 결정하여 두 방법 사이에 유의한 차이가 있는가를 분석한다. 1999년 8월 9일부터 2003년 2월 7일까지 통화안정증권의 일별, 주별 자료를 사용하여 분석한다. 액면이자 효과를 제거하기 위해 복리채만을 분석대상으로 한다. 모수적 방법을 이용할 때 이자율 변화의 추세항은 선형으로 나타나지만 변동성항은 이자율변화에 비해 급격히 변하는 비선형을 나타낸다. 비모수적 분석방법을 이용할 때 추세항과 변동성항 모두 이자율 변화에 비해 급격히 변하는 비선형을 나타낸다. 모수적 방법과 비교하여 추세항은 다른 결과를, 그리고 변동성항은 같은 결과를 보인다. 추세항과 변동성항의 예측을 감안하여 이자율의 시장위험 및 채권가격을 산출한 결과 모수적 방법과 비모수적 방법은 유의적인 차이를 보인다. 이는 이자율 및 이자율의 시장위험가격 예측은 비모수적 방법을 사용하는 것이 적합하다는 것을 뜻한다.

  • PDF

비모수적 기법에 의한 확률론적 저수지 유입량 예측 (Probabilistic Reservoir Inflow Forecast Using Nonparametric Methods)

  • 이한구;김선기;조영현;정구열
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.184-188
    • /
    • 2008
  • 추계학적 시계열 분석은 크게 수문자료의 장기간 합성과 실시간 예측으로 구분해 볼 수 있다. 장기간 합성은 주로 수문자료의 추계적 특성을 반영한 수자원 시스템의 운영율 개발에 이용되어 왔다. 반면에 실시간 예측은 수자원 시스템의 순응적(adaptive) 관리에 적용되고 있다. 두 개념의 차이로 전자는 시계열 자료를 합성하여 발생 가능한 모든 수문조합을 얻고자 하는 것이라면 후자는 전 시간의 수문량을 조건으로 하는 다음 시간의 값을 순응적으로 예측하는 것이라 할 수 있다. 수문자료의 합성과 예측에는 크게 결정론적, 확률론적 방법의 두 가지 대별될 수 있다. 결정론적 모델링 방법에는 인공신경망이나 Fuzzy 기법 등을 이용할 수 있으며, 확률론적 방법에는 ARMAX 등의 모수적 기법과 k-NN(k-nearest neighbor bootstrap resampling), KDE(kernel density estimates), 추계학적 인공신경망 등의 비모수적 기법으로 분류할 수 있다. 본 연구에서는 대표적 비모수적 기법인 k-NN를 이용하여 충주댐을 대상으로 월 및 일 유입량 자료의 예측 정도를 살펴보았다. 전 시간 관측치를 조건으로 하는 다음 시간의 조건부 확률분포를 구하여 평균값을 계산한 후 관측치와 비교함으로써 모형의 정도를 살펴보았다. 그리고 실시간 저수지 운영에 이 기법의 활용성과 장단점도 살펴보았다. 모형개발 절차로 모형의 보정을 거쳐 검증을 실시하였다. 결론적으로 월 및 일 유입량 예측에 k-NN 기법이 실무적으로 적용될 수 있었으며, 장점으로는 k-NN 기법이 다른 기법보다 모델링 절차가 비교적 쉬워 저수지 운영 최적화 등 타 시스템과의 연계에 수월함이 인식되었다.

  • PDF

모수, 비모수, 베이지안 출산율 모형을 활용한 합계출산율 예측과 비교 (A comparison and prediction of total fertility rate using parametric, non-parametric, and Bayesian model)

  • 오진호
    • 응용통계연구
    • /
    • 제31권6호
    • /
    • pp.677-692
    • /
    • 2018
  • 최근 2017년 우리나라 합계출산율은 1.05명로 2005년 1.08명 수준으로 회귀하는 현상을 보이고 있다. 1.05명은 인구대체선(2.1명), 안전선(1.5명)과도 거리가 먼 초저출산 수준이고 마치 초저출산 덫에 빠질 우려가 있다. 이에 합계출산율의 합리적인 예측과 이를 통한 출산정책에 유용한 자료를 제공하는 것은 그 어느 때 보다도 중요하다. 그 동안 다양한 통계적 방법으로 합계출산율 추이를 예측하였는데, 데이터 완비성이 높고 품질이 좋은 경우 모형 접근인 모수적 방법, 데이터 추이가 단절되거나 변동이 심한 경우 평활과 가중치를 적용한 비모수적 방법, 데이터 부족과 품질 등으로 선진국의 출산율 3단계 전이현상을 참고하여 이들의 사전분포를 활용하는 베이지안 방법 등이 적용되어 왔다. 본 연구는 최근 변동이 심한 우리나라 출산율에 모수, 비모수, 그리고 베이지안 방법을 적용하여 추정과 예측을 실시하고 도출된 결과 비교를 통해 적합성과 타당성 측면에서 어떤 방법이 합리적인지 모색하고자 한다. 분석결과 합계출산율 예측값 순위는 통계청 합계출산율이 가장 높고, 베이지안, 모수, 비모수 순으로 나타났다. 2017년 TFR 1.05명 수준을 감안할 때 모수, 비모수모형으로 도출된 합계출산율 예측값이 합리적이다. 또한 출산율 자료완비성이 높고 품질이 우수할 경우 계산 효율성과 적합도 관점에서 모수적 추정과 예측 접근 방법이 타 방법보다 우수한 것으로 도출되었다.

확률론적 공간 자료 통합 모델을 이용한 산사태 취약성 분석

  • 박노욱;지광훈;권병두
    • 한국지구과학회:학술대회논문집
    • /
    • 한국지구과학회 2005년도 춘계학술발표회 논문집
    • /
    • pp.254-260
    • /
    • 2005
  • 이 논문에서는 산사태 취약성 분석을 목적으로 확률론적 공간통합의 틀 안에서 범주형 자료와 연속형 자료를 효율적으로 처리할 수 있는 비모수적 우도비 추정 모델과 모수적 예측적 판별 분석 모델을 적용하였다. 적용 모델의 비교를 위해 1998년 여름철 산사태로 많은 피해를 입은 경기도 장흥 지역과 충청북도 보은 지역을 대상으로 사례연구를 수행하였다. 장흥 지역에서는 두 모델이 유사한 예측 능력을 나타내었으나, 보은 지역에서는 모수적 예측적 판별 분석 모델이 상대적으로 높은 예측 능력을 나타내었다. 결론적으로 제안한 두 모델은 산사태 취약성 분석을 위한 연속형 자료 표현에 효율적으로 적용될 수 있으며, 두 모델이 개별적인 연속형 자료 표현의 특성을 가지고 있기 때문에 다른 사례 연구를 통한 검증 작업이 병행되어야 할 것으로 생각된다.

  • PDF

단독주택가격 추정을 위한 기계학습 모형의 응용 (Application of machine learning models for estimating house price)

  • 이창로;박기호
    • 대한지리학회지
    • /
    • 제51권2호
    • /
    • pp.219-233
    • /
    • 2016
  • 수리 또는 계량적 모형을 사용하는 사회과학연구에서 분석의 초점은 종속변수와 설명변수의 관계를 밝히는 것, 즉 설명 중심의 모형(explanatory modeling)이 지금까지 주류를 이루었다. 반면 예측(prediction) 능력 제고에 초점을 맞춘 분석은 드물었다. 본 연구에서는 이론 및 가설을 검증하거나 변수 간의 관계를 밝히는 설명 중심의 모형이 아니라 신규 관찰치에 대한 예측 오차를 줄이는, 예측 중심의 비모수 모형(non-parametric model)을 검토하였다. 서울시 강남구를 사례지역으로 선정한 후, 2011년부터 2014년까지 신고된 단독주택 실거래가를 기초자료로 하여 주택가격을 추정하였다. 적용한 비모수 모형은 기계학습 분야에서 제시된 일반가산모형(generalized additive model), 랜덤 포리스트, MARS(multivariate adaptive regression splines), SVM(support vector machines) 등이며 비교적 최근에 개발된 MARS나 SVM의 예측력이 뛰어남을 확인할 수 있었다. 마지막으로 이러한 비모수 모형에 공간적 자기상관성을 추가적으로 반영한 결과, 모형의 가격 예측력이 보다 개선되었음을 알 수 있었다. 본 연구를 계기로 그간 모수 모형에 집중되었던 부동산 가격추정 방법론이 비모수 모형으로 확대 및 다양화되기를 기대한다.

  • PDF

극단값 분포 추정을 위한 모수적 비모수적 방법 (Parametric nonparametric methods for estimating extreme value distribution)

  • 우승현;강기훈
    • 문화기술의 융합
    • /
    • 제8권1호
    • /
    • pp.531-536
    • /
    • 2022
  • 본 논문은 꼬리가 두꺼운 분포의 꼬리부분에 대한 분포를 추정할 경우 모수적 방법과 비모수적 방법의 성능에 대해 비교하였다. 모수적 방법으로는 일반화 극단값 분포와 일반화 파레토 분포를 이용하였고, 비모수적 방법은 커널형 확률밀도함수 추정방법을 적용하였다. 두 접근법의 비교를 위해 2014년부터 2018년까지 서울시 관측소별 일일 미세먼지 공공데이터를 이용하여 블록 최댓값 모형과 분계점 초과치 모형을 적용하여 함수 추정한 결과를 함께 보이고 2년, 5년, 10년의 재현수준을 통해 고농도의 미세먼지가 일어날 지역을 예측하였다.

평균제곱상대오차에 기반한 비모수적 예측 (A New Nonparametric Method for Prediction Based on Mean Squared Relative Errors)

  • 정석오;신기일
    • Communications for Statistical Applications and Methods
    • /
    • 제15권2호
    • /
    • pp.255-264
    • /
    • 2008
  • 공변량 값이 주어졌을 때 반응변수의 값을 예측하는 데에는 평균제곱오차를 최소로 하는 것을 고려하는 것이 보통이지만, 최근 Park과 Shin (2005), Jones 등 (2007) 등에서 평균제곱오차대신 평균제곱상대오차에 기반한 예측을 연구한바 있다. 이 논문에서는 Jones 등 (2007)의 방법을 대체할 새로운 비모수적 예측법을 제안하고, 제안된 방법의 유효성을 뒷받침하는 간단한 모의실험 결과를 제공한다.

비대칭-비정상 변동성 모형 평가를 위한 모수적-붓스트랩 (Asymmetric and non-stationary GARCH(1, 1) models: parametric bootstrap to evaluate forecasting performance)

  • 최선우;윤재은;이성덕;황선영
    • 응용통계연구
    • /
    • 제34권4호
    • /
    • pp.611-622
    • /
    • 2021
  • 본 논문에서는 변동성의 비대칭성과 비정상성을 동시에 고려하고 있다. 다양한 변동성 모형을 분석하고 있으며 모수적-붓스트랩을 통한 예측분포를 이용하여 변동성 모형의 예측 성능을 비교하고 있다. 오차항 분포로서 표준정규분포 및 표준화 t-분포를 고려하였으며 1-시차 후 예측과 2-시차 후 예측을 미국의 다우지수 사례를 통해 설명하였다.

붓스트랩을 이용한 비선형 시계열 모형의 예측구간 (Prediction Intervals for Nonlinear Time Series Models Using the Bootstrap Method)

  • 이성덕;김주성
    • 응용통계연구
    • /
    • 제17권2호
    • /
    • pp.219-228
    • /
    • 2004
  • 오차항의 분포가 정규분포에 따르지 않는 비선형 시계열인 ARCH모형의 예측구간을 설정하는데 붓스트랩 방법과 근사적 방법간의 포함비율에 대한 정확성을 비교한다. 이 때 모형에서 모수를 추정하는 방법으로서는 분포에 대한 가정을 필요로 하지 않는 quasi-score 추정함수를 이용한 추정 법과 로버스트 추정 함수인 M quasi-score 추정 함수를 이용한 추정법을 사용한다. 추정된 모수를 이용하여 예측구간의 정확성을 비교하고 마지막으로 소비자 물가지수 자료를 이용하여 실제 예측구간을 구하는데 적용한다.

모수와 비모수 모형을 활용한 사망률 예측 비교 연구 (A study comparison of mortality projection using parametric and non-parametric model)

  • 김순영;오진호
    • 응용통계연구
    • /
    • 제30권5호
    • /
    • pp.701-717
    • /
    • 2017
  • 급속한 고령화로 인하여 미래의 인구와 인구구조에 관해 사회와 정부의 관심이 증가하고 있으며 우리나라의 사망률은 감소하고 있으나 감소폭은 변동적이다. 본 연구에서는 이를 고려할 수 있는 모형을 살펴보고자 LC 모형, LM 모형, BMS 모형 그리고 비모수평활 기법이 적용된 FDM과 Coherent FDM을 비교 분석하여 연령별 사망률과 기대수명 예측의 정확성 측면에서 남녀 사망률 개선 추이를 예측하는데 적합한 모형을 살펴보았다. 또한 우리나라 사망률 예측에 비모수 기법의 활용 가능성을 검토하였다. 분석 결과 최근 자료의 추세를 잘 반영하는 비모수기법을 활용한 인구통계모델인 FDM과 Coherent FDM의 예측력이 우수함을 알 수 있었다. 결과적으로 FDM과 Coherent FDM은 적합이 뛰어나고, 미래에 변화가 크지 않다면 예측력 또한 우수하다 볼 수 있을 것이다.