• Title/Summary/Keyword: 비매설

Search Result 225, Processing Time 0.02 seconds

Characteristic Changes in Ground-Penetrating Radar Responses from Dielectric-Filled Nonmetallic Pipes Buried in Inhomogeneous Ground (비균일 지하에 묻혀있는 유전체 충진 비금속관에 의한 지표투과레이다 응답의 특성 변화)

  • Hyun, Seung-Yeup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.399-406
    • /
    • 2019
  • The variation of ground-penetrating radar(GPR) signal characteristics from dielectric-filled nonmetallic pipes buried in inhomogeneous ground are compared through a numerical simulation. The relative permittivity distribution of the ground is generated by using the continuous random media(CRM) technique. As a function of the relative permittivity of the material filling the nonmetallic pipe buried in the ground media, GPR signals are simulated by using the finite-difference time-domain(FDTD) method. We show that, unlike the case for homogeneous ground, the distortion characteristics of the reflected waves caused by the front convex surface and the rear concave surface of the pipe buried in inhomogeneous ground are different depending on the permittivity contrast between the inside and outside of the pipe.

Exploration of underground utilities using method predicting an anomaly (이상대 판정기법을 활용한 지하매설물 탐사)

  • Ryu, Hee-Hwan;Kim, Kyoung-Yul;Lee, Kang-Ryel;Lee, Dae-Soo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • Rapid urbanization and industrialization have caused increased demand for underground structures such as cable, and other utility tunnels. Recently, it has become very difficult to construct new underground structures in downtown areas because of civil complaints, and engineering problems related to insufficient information about existing underground structures, cable tunnels in particular. This lack of information about the location and direction-of-travel of cable tunnels is causing many problems. To solve these problems, this study was focused on the use of geophysical exploration of the ground in a way that is theoretically, different from previous electrical resistivity surveys. An electric field analysis was performed on the ground with cable tunnels using Gauss' law and the Laplace equation. The electrical resistivity equation, which is a function of the cable tunnel direction, the cable tunnel location, and the electrical conductivity of the cable tunnel, can be obtained through electrical field analysis. A field test was performed for the verification of this theoretical approach. A field test results provided meaningful data.

Analytical Evaluation on the Structural Safety of Horizontally Curved Parts of Buried Pipe (지중 매설관 곡선부의 해석 및 안전성 평가)

  • Jeon, Jin-Su;Kim, Sung-Nam;Han, Taek-Hee;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.47-55
    • /
    • 2008
  • Recently, it has been reported that buried pipes' crack is concentrated on curved parts. In this study, 3D-Finite element analysis is performed for Analytical Evaluation on the Structural Safety of Horizontally Curved Parts of Buried Pipe. The constructed pipe cracked in curved parts of pipe is analyzed and all kinds of loads affected to buried pipes are considered. Displacement, stresses and buckling analysis are performed. The stress analysis shows that stress in curved parts is larger than stresses in straight parts and exceeds allowable stress in some parts. So, stress analysis on curved parts is needed for safety for buried pipe.

Comparison of Behaviors for Underground Flexible Pipes with Installation Gap (관로 이격거리에 따른 지중매설관의 거동특성 비교)

  • 이대수;상현규;김경열;홍성연
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.79-87
    • /
    • 2003
  • Underground flexible pipes for electric cables are subject to external loads and surrounding soil pressure. Particularly, strain of flexible pipes is of great concern in terms of safety and maintenance of electric cables. In this paper, stress and strain of flexible pipes with two types of installation gap, ie, l0cm and naught, were compared to investigate the structural integrity of pipes from actual field test. The effect of degree of compaction and burial depth were also investigated to simulate the variety of construction situation. The results of the field test show that the strain criteria were satisfied under the burial depths of 80cm, 100cm and 120cm regardless of installation gap.

Numerical Analysis of Electrical Resistance Variation according to Geometry of Underground Structure (지하매설물의 기하학적 특성에 따른 전기저항 변화에 대한 수치 해석 연구)

  • Kim, Tae Young;Ryu, Hee Hwan;Chong, Song-Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.49-62
    • /
    • 2024
  • Reckless development of the underground by rapid urbanization causes inspection delay on replacement of existing structure and installation new facilities. However, frequent accidents occur due to deviation in construction design planned by inaccurate location information of underground structure. Meanwhile, the electrical resistivity survey, knowns as non-destructive method, is based on the difference in the electric potential of electrodes to measure the electrical resistance of ground. This method is significantly advanced with multi-electrode and deep learning for analyzing strata. However, there is no study to quantitatively assess change in electrical resistance according to geometric conditions of structures. This study evaluates changes in electrical resistance through geometric parameters of electrodes and structure. Firstly, electrical resistance numerical module is developed using generalized mesh occurring minimal errors between theoretical and numerical resistance values. Then, changes in resistances are quantitatively compared on geometric parameters including burial depth, diameter of structure, and distance electrode and structure under steady current condition. The results show that higher electrical resistance is measured for shallow depth, larger size, and proximity to the electrode. Additionally, electric potential and current density distributions are analyzed to discuss the measured electrical resistance around the terminal electrode and structure.

Development of Buried Type TDR Module for Leak Detection from Buried Pipe (매설관 주변부 누수 탐지를 위한 매설형 TDR 모듈 개발)

  • Hong, Wontaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.31-37
    • /
    • 2021
  • To prevent accidents due to the cavities and loosened layers formed due to water leakage from the deteriorated buried pipes, evaluation of the changes in water contents around the buried pipes is required. As a method to evaluate the water contents of the soils, time domain reflectometry (TDR) system can be adopted. However, slender electrodes used in standard TDR probe may be damaged when buried in the ground. Thus, in this study, buried type TDR module was developed for the evaluation of the water contents with maintaining required shape of the electrodes in the ground. The TDR module is composed of three electrodes connected to the core conductor and outer conductor and a casing to prevent deformation and maintain alignment of the electrodes in the ground. For the verification of TDR waveforms measured using the TDR module, comparative analysis was conducted with the TDR waveforms measured using the standard TDR probe, and the relationship between the volumetric water content of the soils and the travel time of the guided electromagnetic wave was constructed. In addition, a model test was conducted to test the applicability of the buried type TDR module, and the experimental result shows that the TDR module clearly evaluates the changes in volumetric water contents due to the leakage from the modeled buried pipe. Therefore, the buried type TDR module may be effectively used for the health monitoring of the buried pipe and the evaluation of the water contents around the pipes buried in the urban pavements.

A Study on the Deformation Characteristics on Underground Pipe to Backfill Material Types Using Finite Element Method (유한요소해석을 통한 되메움재 종류에 따른 지하매설관의 변형 특성 연구)

  • Byun, Yoseph;Ahn, Byungje;Kwang, Byeongjoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.11-18
    • /
    • 2009
  • When underground pipe is installed, backfill materials need proper compaction. But in case of circular underground pipe, compaction of backfill material is difficult and compaction efficiency is poor at beloe the pipe. It caused the stability of underground pipe is reduced and various damages occurred. One of the solutions to solve this problem for underground pipe is to use controlled low strength material (CLSM). CLSM is made by concept of low strength concrete, which is applied to geotechnical engineering field. The representative characteristics of CLSM are self-leveling, self-compacting and flowability. In addition, its strength can be controlled and its construction method is simple. The behavior of underground pipe was investigated by finite element analysis for various backfill materials under same condition. As a result, in case of using the CLSM as backfill material, surface settlement and displacement of pipe are reduced comparing with those in case of using field soil or sand.

  • PDF

GEOTECHNICAL ENVIRONMENT SURVEY (2) (고심도 지반환경 조사 - 비파괴 물리탐사의 적용 (2))

  • HoWoongShon;SeungHeeLee;HyungSooKim
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.4
    • /
    • pp.261-268
    • /
    • 2003
  • Lots of various utilities are buried under the surface. The effective management of underground utilities is becoming the very important subject for the harmonious administration of the city. Ground Penetrating Radar(GPR) survey including other various underground survey methods, is mainly used to detect the position and depth of buried underground utilities. However, GPR is not applicable, under the circumstances of shallow depth and places, where subsurface materials are inhomogeneous and are composed of clay, salt and gravels. The aim of this study is to overcome these limitations of GPR and other underground surveys. High-frequency electromagnetic (HFEM) method is developed for the non-destructive precise deep surveying of underground utilities. The method is applied in the site where current underground surveys are useless to detect the underground big pipes, because of poor geotechnical environment. As a result, HFEM survey was very successful in detecting the buried shallow and deep underground pipes and in obtaining the geotechnical information, although other underground surveys including GPR were not applicable. Therefore this method is a promising new technique in the lots of fields, such as underground surveying and archaeology.

  • PDF

Earthquake Fragility Analysis of a Buried Gas Pipeline (매설가스배관의 지진 취약도 해석)

  • Lee, Do-Hyung;Jeon, Jeong-Moon;Oh, Jang-Kyun;Lee, Du-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.65-76
    • /
    • 2010
  • In this paper, earthquake fragility analysis has been comparatively performed with regard to a buried gas pipeline of API X65 which has been widely used in Korea. For this purpose, a nonlinear time-history analyses has been carried out for 15 different analytical models of a buried gas pipeline in terms of the selected 12 sets of earthquake ground motions with 0.1g of scaling interval. Following that, earthquake fragility analyses have been conducted using the maximum axial strain of the pipeline obtained from the nonlinear time-history analyses. Parameters under consideration for subsequent earthquake fragility analyses are soil conditions, end-restraint conditions, burial depth and the type of pipeline. Comparative analyses reveal that whereas the first three parameters influence the fragility curves, particularly soil conditions amongst the three parameters, the last parameter has a little effect on the curves. In all, the present study can be considered as a benchmark fragility analysis of a buried gas pipeline in the absence of an earthquake fragility analysis of the pipeline and thus is expected to be a useful source regarding earthquake fragility analyses of a buried gas pipelines.

Substructure Evaluation of Pavement due to Excavation and Recompaction Sequences for Pipe Installation (굴착, 관 매입 및 다짐 연속과정에 따른 포장하부구조 강성펑가)

  • Lim, Yu-Jin;Park, Jae-Beom
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.239-247
    • /
    • 2009
  • Pipe installation following excavation of pavement and underlying-soils induces settlements, cracks and bad roughness near utility cut. This study is to use PMT and LDWT in order to evaluate stiffness and/or degree of compaction of sublayers and backfill in utility cut section because no specially designed efforts for evaluating stiffness condition of the substructures below new pavement after pipe installation are offered at this time. From test results of PMT, comparable stiffness and/or degree of compaction in recompaction process is not obtained comparing to that of the existing sublayers before excavation. Thickness of the new surface layer after pipe installation must be designed thicker than that of the existing surface layer. It is verified that LDWT comparing to PMT is effective only to get stiffness and/or degree of compaction within limited depth from surface of materials, but it is not useful to evaluate stiffness of substructures in full depth in case of utility cut.

  • PDF