• Title/Summary/Keyword: 비례-적분 제어

Search Result 187, Processing Time 0.064 seconds

Continuous-Time Controller Design using Identification of Feedback System in Frequency Domain (주파수역 피드백시스템인식을 이용한 연속시간 제어기 설계)

  • Yang, Ho-Suk;Jung, Yu-Chul;Lee, Gun-Bok
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.664-669
    • /
    • 2001
  • Continuous-time controller design is proposed using feedback system identification in frequency domain. System stability imposed by a new controller is checked in the function of a conventional closed-loop system, instead of a poorly modeled plant due to non-linearity and disturbance as well as unstable components, etc. The stability of the system is evaluated in view of Nyquist stability. All the equations are formulated in the framework of the discrete-time system. Simulation results are shown on the plant with input saturation and DC disturbance.

  • PDF

Effective Dynamic Models for the Development of Control Algorithms of a Condensing Gas Boiler System (콘덴싱 가스보일러시스템의 제어 알고리즘 개발을 위한 효과적인 동적모델)

  • Han, Do-Young;Kim, Sung-Hak
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.34-39
    • /
    • 2007
  • Condensing gas boiler units may make a big role for the reduction of energy consumption in heating industries. In order to decrease the energy consumption of a condensing gas boiler unit, the effective operations and controls of the system are necessary. In this study, mathematical models of a condensing gas boiler system were developed and programmed in order to predict dynamic behaviors of the system. These include dynamic models for a blower, a gas valve, a pump, a burner, a boiler heat exchanger, and a hot water heat exchanger. Control algorithms for the control of a gas valve, a blower, and a pump were also assumed. Simulation results showed good predictions of the dynamic phenomena of a boiler system. Therefore, the simulation program developed for this study may be effectively used for the development of control algorithms of the boiler system.

  • PDF

Microcomputer-Based Velocity Control for an Electro-Hydraulic Servo System (마이크로컴퓨터에 의한 전기 유압 서보 시스템의 속도제어)

  • 장효환;안병천;김영준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.221-230
    • /
    • 1988
  • In the microcomputer-based velocity control for an electro-hydraulic servo system, the effects of control methods and control hardware on the performance of the system were investigated. Experiments were carried out with PID and deadbeat controllers using 8 or 16 bit microprocessor and 8 or 12 bit A/D and D/A converters. It is found that the transient response of the system is better with PID controller than with deadbeat controller. When the number of bits of the microprocessor and converters are small, it is also found that amplitude quantization due to limited word-length gives significant effects on transient responses of the system. Analytically predicted step responses are in good agreement with experimental ones.

Active Shape Control of Composite Beam Using Shape Memory Alloy Actuators (형상기억합금 작동기를 이용한 복합재 보의 능동 형상 제어)

  • Yang, Seung-Man;Roh, Jin-Ho;Han, Jae-Hung;Lee, In
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.18-24
    • /
    • 2004
  • In this paper, active shape control of composite structures actuated by shape memory alloy (SMA) wires is presented. The thermo-mechanical behaviors of SMA wires were experimentally measured. Hybrid composite structures were established by attaching SMA actuators on the surfaces of graphite/epoxy composite beams using bolt-joint connectors. SMA actuators were activated by phase transformation, which induced by temperature rising over austenite finish temperature. In this paper, electrical resistive heating was applied to the hybrid composite structures to activate the SMA actuators. For (aster and more accurate shape/deflection control of the hybrid composite structure, PID feedback controller was designed from numerical simulations and experimentally applied to the SMA actuators.

An Analytical Study on Control Algorithm for the Precise Position Control of the Actuator System (구동장치의 정밀한 위치제어를 위한 구동제어기법에 대한 해석적 연구)

  • Ahn, Wongeun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.19-25
    • /
    • 2016
  • Using a actuator to which the motor and the gear is applied to the I-PD control method and a dual-loop system to carry out precise position control. I-PD control algorithm performs an operation to reduce the overshoot in the transient response. Accordingly, the actuator obtains a precise position tracking result. Also it utilizes two sensors and dual loops. It reduces the adverse effect on the precise position control that may occur by the end play of the gear train. In this paper, we uses the actuator model applying the BLDC motor and gear in order to determine the position tracking result by the dynamic characteristic change. It was verified by the simulation results.

Analytical Design of PID Controller for Improved Disturbance Rejection of Delay-Free Processes (시간지연이 없는 공정에서의 외란제거 성능 향상을 위한 PID 제어기의 해석적 설계)

  • Jujuly, M. Masum;Vu, Truong Nguyen Luan;Lee, Moonyong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.565-570
    • /
    • 2011
  • In this paper, the analytical tuning rules of the proportional-integral-derivative (PID) controller have been derived for a broad class of stable, integrating, and unstable processes without time delay. On the basis of the renowned internal model control (IMC) design principles and the two-degree-of-freedom (2DOF) control structure, the proposed method can be effectively used for obtaining the enhanced performances of both the disturbance rejection as well as the set-point tracking problems, since the design scheme is simple, straightforward, and can be easily implemented in the process industry. Several processes without time delay are employed to demonstrate the improved closed-loop performance of the proposed controller design in compared with the other well-known design methods in terms of the same degree of robustness.

Inertia Identification Algorithm for High Performance Speed Control of Electric Motor (고성능 전동기 속도제어를 위한 관성추정 알고리즘)

  • Lee Sang-Cheol;Kim Heung-Geun;Choi Jong-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.436-442
    • /
    • 2005
  • This paper proposes an estimation algorithm to find the moment of inertia, which is essential to design high performance controller for motor drive system. The algorithm finds the moment of inertia observing the position error signal, which contains an error information of moment of inertia, generated by speed observer. Moreover, the proposed algorithm is easily realized in the observer-based speed detection method. The simulation and experimental results are also presented to confirm the performance of moment of inertia estimation method, which shows that the moment of inertia converges to the actual value within several seconds. The speed control responses and the designed speed controller performance match well.

Improvement of Dynamic Response for IPMSM based on DTC-CFTC Using Sliding Mode Control (일정 스위칭 주파수를 가지는 DTC 기반 IPMSM의 슬라이딩 모드 제어를 이용한 속응성 향상)

  • Han, Byeol;Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.628-635
    • /
    • 2019
  • This paper proposes sliding mode control (SMC) method for improvement of dynamic response for IPMSM based on DTC with constant switching frequency. DTC with constant switching frequency method consists of PI torque controller and triangular comparator for constant torque error status. It has the poor dynamic response compared to conventional DTC. This paper proposes improvement method of dynamic response of DTC with constant switching frequency by using SMC. Simulation results confirm the effectiveness of the proposed method.

Drone Hovering using PID Control (PID 제어를 이용한 드론의 호버링)

  • Oh, Ji-Wan;Seol, Jae-Won;Gong, Youn-Hee;Han, Seung-Jae;Lee, Seung-Dae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1269-1274
    • /
    • 2018
  • In this paper, it covers technical aspect of drone by introducing the drone hovering. Arduino Uno and 3-axis attitude and azimuth sensor are the two main components of the drone. Arduino Uno is used as a main controller and 3-axis attitude and azimuth sensor are used to collect axial (X,Y,Z) data, which is massaged to determine the pitch (fore and aft tilt) and the bank (side to side tilt). Furthermore, drone stabilizes horizontal attitude by correcting these tilted angle through PID control.

A Study on the Prefilter to Protect Overshoot of Active Magnetic Bearing using Integral Type LQR-design Method (적분형 LQR 설계 기법을 이용한 능동자기베어링의 오버슈트 방지용 입력필터에 관한 연구)

  • Kang, Seong-Gu;Lee, Kee-Seok;Chung, Jun-Mo;Shin, Woo-Cheol;Hong, Jun-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • Active magnetic bearing has been adopted to support the rotor by electomagnetic force without mechanical contact and lubrication process. A property of the control system for magnetic bearing is improved in accordance with making higher system gain. If the control system has integral part, an excessive overshoot response is shown by making higher integral gain. Therefore, this paper suggests a PID control system in order to eliminate the overshoot at the first stage and improve response characteristics to an impact disturbance at the status of levitation. The control gain was obtained by LQR design method which has the structure of I-PD control system in the state space. The PID control system containing prefilter has the same structure as the I-PD control system. Therefore, the PID control system adopted is able to be tuned by LQR design method. Finally, this paper shows the effect of the prefilter on the active magnetic bearing system through response experiments for levitation responses.