• Title/Summary/Keyword: 비례 적분 미분제어

Search Result 76, Processing Time 0.029 seconds

A Study on the Automatic Operation Performance Control of Urban Rail Vehicle Using an Optimal Control (최적제어를 이용한 도시철도 차량 자동주행 제어 연구)

  • Tak, Kil-Hun;Kim, Dong-Hwan;Kim, Chi-Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.29-37
    • /
    • 2007
  • In the automatic operation of an urban rail vehicle, a conventional PID control algorithm is applied to run the vehicle between stations within time limit and jerk limit. But the energy consumption in the automatic operation is much higher than in the manual operation. In this study, the optimal control algorithm for automatic operation is proposed to minimize energy consumption, which satisfies automatic operation for the urban rail vehicle, compared with the conventional PID control algorithm.

Controller Design for Stable Engine Idle Mode (안정한 엔진 공회전 모드를 위한 제어기 설계)

  • 이영춘;방두열;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.89-95
    • /
    • 2000
  • The engine idle speed mode becomes worse as one drives a vehicle for several years. This is due to ageing of engine and power-train parts. In this case, unstable idle conditions such as engine stall and droop are frequently experienced when the engine gets heavy torque loads due to power steering pump and air conditioning compressor. The objective of this paper is to study on the idle speed control using PID controller under load disturbances. The input of the PID controller is an error of rpm. The output of the PID controller is an ISCV duty cycle. The dSPACE Controller Boards are used to interface with engine. The on-vehicle test is realized using by SIMULINK and BLOCKSETS tools. The real time interface control panel supplied by Control Desk S/W is designed to have good results in engine idle speed control.

  • PDF

Design of a Drilling Torque Controller in a Machining Center (머시닝센터에서 드릴링 토크 제어기의 설계)

  • 오영탁;권원태;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.513-518
    • /
    • 2001
  • As the machining depth increases, the drilling torque increases and fluctuates and the risk of drill failure also increases. Hence, drilling torque control is very important to prevent the drill from failure. In this study, a PID controller was designed to control the drilling torque in a machining center. The plant including the feed drive system, cutting process, and spindle system was modeled for controller design. The Ziegler-Nichols rule was used to determine the controller gain and control action times. The root locus plot was used to tune the controller gain for a certain cutting condition. Also, suggested was a simple method to obtain the tuned controller gain for an arbitrary cutting condition not using the Ziegler-Nichols rule and root locus plot. The cutting torque control, performance of the designed controller and the effect of gain tuning on the control performance were examined.

  • PDF

A Study on Position Control of an Electro-Hydraulic Servo System Using High Speed On-Off Valves (고속전자밸브를 사용한 전기유압서보시스템의 위치제어에 관한 연구)

  • 허준영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.369-378
    • /
    • 1999
  • This paper presents position control of an electro-hydraulic servo system whoch is operated by four 2-2way high speed on-off valves with either PWM PID control method or sliding mode control method, The advantages of using high speed on-off valves instead of electo-hydraulic servo valves or electro-hydraulic proportional valves are low price robustness for oil contamination and direct control without a D/A converter. The system consists of load cylinder inertia car potentiometer and external load cylinder. The experiments were carried out under several conditions and the results were compared. As a result the sliding mode method has shown good control performance and the robust and stable positioning of the elector-hydraulic servo system can be achieved accurately.

  • PDF

A Study on Position Control of Hydraulic Single-Rod Cylinder Subjected to Load Disturbance (부하외란을 받는 편로드 유압실린더의 위치제어에 관한 연구)

  • 윤일로;염만오
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.89-95
    • /
    • 2003
  • A PID controller integrated with a velocity feedback is designed for fluid power elevator model system in this study. In this case, for outside disturbance load a hydraulic cylinder and a pressure control valve are used. In this method overshoot is reduced and settling time becomes also shorter than the values achieved from the PID controller system only In conclusion a PID controller integrated with a velocity feedback is considered a suitable control method for fluid power elevator system.

A Development of Sub-Controller for Game Motion Simulator (게임기용 운동재현기의 하위제어기 설계)

  • Jung, Gyu-Hong;Suh, Chung-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.146-151
    • /
    • 2001
  • The Grand-Touring is a game motion simulator that simulates the race-car driving motion with three hydraulic cylinders which connect the platform and base in parallel. Its motion control system consists of the PC-based main controller and micro-controller based sub-controller. The former one process the dynamic image of race-car in response to the driver's action and computes the reference command for each cylinder and the latter one is designed for the tracking control of hydraulic cylinder and interfacing the auxiliary signals between various sensors/actuator and main controller. In this research, we developed the sub-controller that implements the required functions of Grand-Touring and prove the overall performance with experiments.

  • PDF

Control characteristics of a refrigerant compressor test facility (냉매압축기 성능시험장치의 제어 특성)

  • Lee, J. Y.;Lee, D. Y.;Kim, K. H.;Nam, P. W.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.46-51
    • /
    • 1999
  • This paper describes the control charcteristics of thermal/flow systems. In thermal/flow systems, the transport lag plays as a dead time causing a deterioration of the controllability. Besides this, such many parameters including the temperature, pressure, and flow rate affect the system response that a control scheme which can deal with multi-input is required. Particularly in a refrigerant compressor test facility, the evaporator and condenser interact each other so that the change in the evaporator pressure cause the condenser pressure to change or vice versa. Therefore, to control the evaporator pressure, not only the cooling water flow rate in the evaporator but also the coolant flow rate in the condenser is considered. Meanwhile, the conventional PID controllers, which is suitable for a single input system, shows a large overshoot for a disturbance input. In this work, the predictive control scheme is introduced and its applicability is discussed for thermal/flow systems.

  • PDF

Speed Control of Marine Gas Turbine Engine using Nonlinear PID Controller (비선형 PID 제어기를 이용한 선박용 가스터빈 엔진의 속도 제어)

  • Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.457-463
    • /
    • 2015
  • A gas turbine engine plays an important role as a prime mover that is used in the marine transportation field as well as the space/aviation and power plant fields. However, it has a complicated structure and there is a time delay element in the combustion process. Therefore, an elaborate mathematical model needs to be developed to control a gas turbine engine. In this study, a modeling technique for a gas generator, a PLA actuator, and a metering valve, which are major components of a gas turbine engine, is explained. In addition, sub-models are obtained at several operating points in a steady state based on the trial running data of a gas turbine engine, and a method for controlling the engine speed is proposed by designing an NPID controller for each sub-model. The proposed NPID controller uses three kinds of gains that are implemented with a nonlinear function. The parameters of the NPID controller are tuned using real-coded genetic algorithms in terms of minimizing the objective function. The validity of the proposed method is examined by applying to a gas turbine engine and by conducting a simulation.

Proposal of Practical Reference-Model and It's Performance Improvement for PID Control (PID제어를 위한 실용적인 기준 모델 제안과 성능개선)

  • Hur, J.G.;Yang, K.U.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.66-72
    • /
    • 2007
  • This study proposed new method to decide the reference model necessary for design PID controller. In generally, control design problems using the reference model have the following two factors. One factor is that numerical model of the controlled system can be obtained extremely, and the other is that specification for the closed-loop dynamic performance is pure moderate. Therefore, the control design procedure is essentially based on the partial reference model matching which offers a reasonable method to simplify the design and the controller configuration under the controlled system uncertainty. ITAE(Integral of time-multiplied absolute error) performance index and Kitamori method etc. which were used a reference model method had a limit to settling time and rising time of reference model that it arrived to steady state response according to the controlled system. On this study, if it only knew peak time of overshoot and settling time by measurement signal of the controlled system, it can be made the reference model easily. We proposed new method to improve performance index of the reference model superior to existing reference model index and illustrate the numerical simulation results to show the effectiveness of proposed control method design.

  • PDF

A Study on the Modeling and Control of a Flexible One-Link Manipulator Moving in a Vertical Plane (수직면에서 회전운동 하는 단일 탄성링크를 가지는 매니퓰레이터의 모델링과 제어에 관한 연구)

  • Kim, Jongdae;Oh, Seokhyung;Kim, Kiho;Oh, Chaeyoun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.132-142
    • /
    • 1996
  • This paper presents a technique to model and control a manipulator which has a flexible link and moves in a vertical plane. The flexible link is modeled as an Euler-Bernoulli Beam. Elastic deformation of the flexible link is represented using the assumed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. This paper presents a simple technique to improve the correctness of the developed model. The final model including the shortening effect due to elastic deformation correlates very well with experimental results. The free body motion simulation shows that two assumed modes for the representation of the elastic deformation is proper in terms of the model size and correctness. A control algorithm is developed using PID control technique. The proportional, integral and derivative control gains are determined based on dominant pole placement method with a rigid one-link manipulator. A position control simulation shows that the control algorithm can be used to control the position and residual oscillation of the flexible one-link manipulator effectively.

  • PDF