Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.354-357
/
2020
최근 스포츠 경기나 차량 블랙박스 등에서 비디오를 이용한 판정이 점차 확대되고 있지만, 일반 카메라로 촬영된 비디오에서 정확한 판정을 하기 어려울 때가 빈번히 발생한다. 초고속 카메라로 촬영한 슬로우 모션 비디오를 이용할 수 있다면 판정의 정확성을 향상시킬 수 있을 것이다. 본 논문에서는 일반 카메라로 촬영한 비디오로부터 마치 초고속 카메라로 촬영한 것과 같은 슬로우 모션 비디오를 생성하여 제공하는 서비스를 제안한다. 제안 방법은 NVIDIA에서 개발한 Super Slomo 기술을 기반으로, 초당 30장의 표준 비디오를 초당 60장에서 240장까지의 고품질 슬로우 모션 비디오로 변환한다. 이 기술은 시간적으로 이웃한 두 영상을 입력하여 딥 러닝 기반으로 중간 프레임을 보간함으로써 프레임율을 향상시킨다. 또한 본 논문에서는 Super Slomo 기술에 FP16을 적용하여 처리속도를 향상 시켰으며, 웹 서버를 이용하여 비디오를 업로드하고 슬로우 모션으로 변환된 비디오를 다운로드 할 수 있는 사이트를 구현했다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.06a
/
pp.334-335
/
2018
최근 수 년간 비디오 콘텐츠 소비 공간이 인터넷으로 확장되며 지능적 비디오 콘텐츠 추천 기술 개발이 진행되어 왔다. 하지만 지능적 비디오 콘텐츠 추천 기술은 사용자의 기호나 업로드된 비디오 콘텐츠의 제목 등을 기반으로 하여 비디오 콘텐츠 클래스에 대한 분석 없이 유사한 비디오 콘텐츠를 탐색하고 추천해주는 기술이 대부분이다. 본 논문에서는 지능적 콘텐츠 추천을 위한 딥러닝 기반 방송 콘텐츠 클래스 분류 시스템을 제안한다. 방송 콘텐츠 내 영상 정보를 이용하여 방송 콘텐츠 클래스를 분류하며 높은 분류 정확도를 보여주는 것을 확인할 수 있다.
비디오 데이터를 효율적으로 처리하기 위해서는 비디오 데이터가 가지고 있는 내용에 대한 정보를 데이터베이스에 저장하고 사용자들의 다양한 질의를 처리할 수 있는 의미기반 검색 기법이 요구된다. 본 논문에서는 사용자의 키워드 학습과 비교 영역 학습을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화된 비디오 검색 시스템을 제안한다.
2018년도부터 국내에서 많이 알려진 Volumetric Video(이하 볼류메트릭 비디오)는 지난 몇 년간 지속적인 개발과 변화를 해왔고 최근에는 데이터의 생성 방법을 보다 쉽고 가볍게 만드는 기술이 도입되면서 아직 대중적으로 보편화된 시스템은 아니지만 지속 성장을 하고 있다. 본 논고에서는 실제 사람을 기반으로 만든 볼류메트릭 비디오와 최근 국내외에서 많이 활용되고 있는 LED Wall을 이용한 ICFVX(In Camera VFX), XR Stage와 연계한 콘텐츠 제작 사례를 중심으로 볼류메트릭 비디오의 디지털 휴먼으로서 활용도와 더 나아가 게임엔진 기반의 가상 공간에서의 볼류메트릭 비디오 기술 적용 확대에 대하여 살펴본다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.214-216
/
2022
비디오 프레임 보간 기술은 시간 해상도를 증가시키는 기술로 최근 Convolutional Neural Network(이하 CNN) 기반의 다양한 연구가 진행되고 있다. 하지만 일부 시각에서는 CNN 기반의 연구가 동일한 커널을 모든 화소에 적용하는 것과 객체의 움직임을 예측하기 위해 장기간의 데이터를 활용하는 것에 한계점이 있다고 주장한다. 이에 따라 장기간의 데이터 활용에 특화된 트랜스포머 기반의 비디오 프레임 보간 기술이 제안되었다. 본 논문에서는 트랜스포머 기반의 기존 연구에서 합성 네트워크의 성능을 향상시키기 위해 광학 흐름 안내 기반의 새로운 학습 방법을 제안한다 실험 결과를 통해 평균 PSNR 0.09dB와 SSIM 0.0031 성능 향상을 확인한다.
The fast advances in digital video processing and multimedia processing technology over the last decade enabled various non-linear video browsing techniques. Based on the machine-understanding of the video content, non-linear video brows ing interfaces such as key-frame based content summarization have been introduced. The key-frame based user interfaces, such as storyboard or table of content, however, are still very hard for conventional TV users to use, and are very hard to implement without the service providers providing additional information for the construction of the key-frame based interfaces. In this paper, non-linear video browsing techniques, which not only overcome previously described drawbacks but also are easy-to-use, and real-time video indexing technology to support the proposed browsing techniques are proposed. The structure-based skipping and skimming help users easily find interesting scene and understand the content in a very short time, using real-time video indexing technology.
The Journal of Korean Institute of Communications and Information Sciences
/
v.25
no.5B
/
pp.913-924
/
2000
This paper proposes an efficient descriptor for objects motion trajectory and a video retrieval algorithm based on objects motion trajectory. The algorithm describes parameters with coefficients of 2-order polynomial for objects motion trajectory after segmentation of the object from the scene. The algorithm also identifies types, intervals, and magnitude of global motion caused by camera motion and indexes them with 6-affine parameters. This paper implements content-based video retrieval using similarity-match between indexed parameters and queried ones for objects motion trajectory. The proposed algorithm will support not only faster retrieval for general videos but efficient operation for unmanned video surveillance system.
비디오 정보를 자동으로 학습하고 관련 문제를 해결하기 위해서는, 비디오의 기본 구성요소인 영상, 음성, 언어 정보의 학습을 기반으로 고차원의 추상적 개념을 파악하는 기술이 필수적이다. 최근 딥러닝이 실용적인 수준으로 이러한 기술을 가능하게 함에 따라, 보다 도전적인 비디오 스토리 분석과 이해 문제 해결을 시도할 수 있게 되었다. 본 고에서는 비디오의 요소별 분석에 적용 가능한 최신 딥러닝 기술을 소개하고, 딥러닝 기술을 핵심으로 한 TV 드라마의 스토리 분석 사례를 살펴본다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
1999.11b
/
pp.141-145
/
1999
뉴스나 드라마, 영화 등의 비디오에 대한 검색 시 일반 사용자의 요구에 가장 잘 부합되는 결과를 얻기 위해 비디오 데이터의 의미적 분석과 색인을 만드는 것이 필요하다. 일반적으로 음성신호가 비디오 데이터의 내용을 잘 나타내고 비디오와 동기가 이루어져 있으므로, 내용기반 검색을 위한 비디오 데이터 분할에 효율적으로 이용될 수 있다 본 논문에서는 캡션 정보가 주어지는 방송뉴스 프로그램을 대상으로 효율적인 검색, 색인을 위한 비디오 데이터의 분할에 음성인식기술을 적용하는 방법을 제안하고 그에 따른 실험결과를 제시한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.06a
/
pp.140-143
/
2019
본 논문에서는 사용자 시점에 대응하는 고화질 360 비디오 제공을 위해 다시점 360 비디오 중복성 제거기법을 적용하고 잔여 비디오를 하나의 영상으로 병합하여 압축 후 전송하는 시스템을 구현한다. 사용자 움직임 적응적 360 비디오 스트리밍을 지원하는 three degrees of freedom plus (3DoF+)를 위한 시스템은 다시점에서 촬영된 다수의 고화질 360 비디오 전송을 요구한다. 이에 대한 방안으로 다시점 비디오 간 중복성 제거를 위한 3D warping 을 기반으로 하는 뷰 간 중복성 제거 기술과 비디오 복원에 필요한 타일들만 추출 및 병합해주는 잔여 뷰 병합 기술에 대한 구현 내용을 설명한다. 제안된 시스템을 기반으로 다시점 360 비디오 전송을 수행하면, 기존 high-efficiency video coding (HEVC)을 사용하여 전송했을 때 대비 최대 20.14%의 BD-rate 감소가 가능함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.