• Title/Summary/Keyword: 비대칭 비구면

Search Result 7, Processing Time 0.022 seconds

Design of an Anamorphic Aspherical Prism Lens for the Head Mount Display (HMD용 회전 비대칭 비구면 프리즘 렌즈 설계)

  • Park, Seung-Hwan;Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.4
    • /
    • pp.83-88
    • /
    • 2008
  • Purpose: To design an anamorphic aspherical prism lens for the HMD optical system. Methods: First, we get the initial data, needed in design, which are distances between each surface etc., by analyzing user's demended specifications and by drawing geometrically the shape of prism lens by using CAD. Based on these data and using 'ode V' which is an optical design software, we could progress the optimization in which we treat the coefficients of the anamorphic aspherical surface as the principal variables. To reduce the cost in DTM manufacturing, we would optimize the optical system with the transmitting surface, existed in the direction of video device among 3 surfaces of the prism lens, remaining as a plane. Results: we could design one anamorphic aspherical prism lens which has the finite ray aberration of 15 ${\mu}m$, the distortion of 0.5%, and the MTF value of 0.3 over at 36 lp/mm for the video device of 12 mm ${\times}$ 9 mm size. Conclusions: We designed a prism lens used for HMD. This prism lens has the optical capacities of 15 ${\mu}m$ finite ray aberration and 0.5% distortion for the video device of 12 mm ${\times}$ 9 mm size, and become the optical system having the MTF value of 0.3 over at 36 lp/mm.

  • PDF

Program Development for Extracting the Numerical Data of Aspherical Surface for the Core Manufacturing of Ophthalmic Lens (안경렌즈 코아 가공을 위한 비구면 형상 도출 프로그램 개발)

  • Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.4
    • /
    • pp.87-90
    • /
    • 2007
  • To manufacture the lens mold used in producing polycarbonate (PC) lenses, the core manufacturing is needed and this core manufacturing is generally performed by diamond turning machine (DTM) or computer numerical control (CNC) lathe. The numerical data about the lens core feature is necessarily needed for operating of these devices. Therefore, we developed the program which calculate the numerical data about the lens core feature. The program was composed to be able to input aspherical coefficients of lens feature, display the graph of lens feature, and save the numerical data file.

  • PDF

A Study on the Grinding of Lens Mold (렌즈용 금형의 연삭가고에 관한 연구 -금형 형상에 의한 사용숫돌의 치수제한에 관하여-)

  • 이영석;김한섭;박규열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1113-1116
    • /
    • 2001
  • Recently, the needs of non-symmetric spherical lens are increasing. Machining non-symmetric spherical lens by general method is limited. This paper researches grinding machine method for non-symmetric spherical lens and accruable problems at processing lens using CAD/CAM. In addition, this paper researches the relation of curvatures to grinding wheel sizes.

  • PDF

Ultra Precision Machining of Injection Mold Core for Asymmetric Aspheric Lens using 6:4 Brass (비대칭비구면 렌즈 사출 코어용 6:4 황동 초정밀 형상 가공)

  • Lee, Dong-Kil;Gu, Hal-Bon;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.427-427
    • /
    • 2007
  • The global applications of aspherics surfaces will expand rapidly on the electronics, optical components, communications, aerospace, defense, and medical optics devices etc. Especially, Asymmetric aspheric prism lens is one of the important parts in HMD(Head Mounted Display) because it affects dominantly on the optical performance of HMD. The mold core is the most important device to produce the plastic lenses by injection molding method. In this study, the mold cores for asymmetric aspheric prism lens were processed using fly-cutting method which is kind of the ultra precision processing and form accuracy and surface roughness of the cores were measured.

  • PDF

The Effects of Corneal Type and Corneal Astigmatism on Tear Volume between Rigid Gas Permeable Lens and the Cornea (각막형상 및 각막난시도가 RGP렌즈와 각막사이의 눈물양에 미치는 영향)

  • Kim, Jihye;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.2
    • /
    • pp.141-150
    • /
    • 2015
  • Purpose: In the present study, a difference in tear volume between the cornea and the rigid gas permeable (RGP) lens relative to corneal shape and corneal astigmatism was investigated by the alignment fitting status of spherical and aspherical RGP lenses. Methods: Spherical and aspherical RGP lenses were fitted with alignment in 77 subjects (135 eyes) who were in their 20~30s. Tear volume stained with fluorescein was qualitatively analyzed by dividing cornea into center, mid-peripheral and peripheral parts. Results: For the spherical RGP lens fitting, tear volume differences were found in each part in all corneal types. For the aspherical RGP lens fitting, tear volume differences were in each corneal part in symmetric bow tie- and asymmetric bow tie-type corneas. However, the tear was equally distributed from the center to the peripheral part in round- and oval-type corneas. In the group with corneal astigmatism lower than 1.25 D, tear volume between center and peripheral parts, and mid-peripheral and peripheral parts, was different when a spherical RGP lens was fitted. However, tear volume in each part was not different in the group with corneal astigmatism over 1.50 D. Moreover, the tear volumes of the central and mid-peripheral parts were proportionally increased with increasing corneal astigmatism in both spherical and aspherical RGP lenses. Furthermore, aspherical RGP lenses showed greater increments than spherical RGP lenses. Conclusions: The results revealed that the difference in tear volume between aspherical RGP lens and cornea was less than spherical RGP lens, and the difference in tear volume varied according to corneal shape and astigmatism. In addition, the method of measuring relative tear volume between RGP lens and cornea that was established in the present study can be used to evaluate tear volume between contact lens and cornea.

Horizontal Stress Based on the Calculation of Lateral Stress Ratio in Unsymmetrical Space (비대칭 공간의 수평응력비 산정에 따른 수평응력에 관한 연구)

  • Moon Chang-Yeul;Lee Soo-Ki;Kwon Seung-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.177-189
    • /
    • 2004
  • The backfilled space carl have various shapes such as vertical or lateral symmetric, unsymmetric slope depending on field conditions. Kellogg (1993) suggested the different equations for the backfill earth pressure and the lateral stress ratio considering that the stresses are different between the symmetrically sloped backfilled space and the vertical one. Kellogg (1993) assumed the stress generated on sloped wall surface as the simple internal friction angle of backfilled soil. However, Moon (1997) suggested modified Kellogg equation assuming that stress behavior in the sloped wall will be varied according to the rotation angle of principal stress and the friction of sloped wall surface. This study has compared and investigated the horizontal stresss of unsymmetrical backfilled space numerically and experimentally obtained when Kellogg lateral stress ratio is appled to and when average lateral stress ratio considering unsymmetric backfill slop of left and right are applied to the modified Kellogg equation. It is shown that the horizontal stress on the sloped wall has good match numerically and experimentally in the modified Kellogg equation when Kellogg's lateral stress ratio in symmetric condition is applied to the unsymmetric condition. But the horizontal stress on the vertical wall shows disagreement numerically and experimentally. The horizontal stress results in good agreement numerically and experimentally when the average lateral stress ratio of left and right at unsymmetric slop as applied to the modified Kellogg equation. Therefore, it is estimated that the application of the average lateral stress ratio to the left and right wall should be considered when backfilled space formed unsymmetric conditions.

Investigation of Asymmetric Aspherical Triangular Prism Optical System for Video Information Display (영상정보디스플레이용 비대칭 비구면 삼각 프리즘 광학계 연구)

  • Youn, Gap-Suck;Yoo, Kyung-Sun;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.590-595
    • /
    • 2014
  • We have investigated anamorphic prism lenses with distortions of 0.3-0.5%. We designed the plastic triangular lens and confirmed the minimum resolution using MTF graphs. Also we confirmed that the SVGA optical system can realize a resolution of $864{\times}648$ 56 megapixels. A distortion of about 0.5% aberration appears in the maximum field, and a finite beam aberration of about $15{\mu}m$ is confirmed. We made a mold based on the design data and completed the prism lens through exodus molding. We confirmed the shape error (< $30{\mu}m$) and surface roughness (> 40 nm) of the three sides. We made the video-information-display prototype glasses using prism lens by measuring the performance, we determined the distortion aberration (0.3%) and SVGA resolution. Our approach will enable fabrication of a portable large-screen display device for glasses and sunglasses for the domestic market and, after 2015, for the world market.