빠르게 증가하는 노후 터널을 효율적으로 관리하기 위하여 최근 영상장비를 이용한 점검 방법론들이 많이 제안되고 있다. 하지만 기존의 방법론들은 대부분 국한된 영역에서 검증을 수행하였을 뿐 아니라, 다른 물체들이 존재하지 않는 깨끗한 콘크리트 표면에서 검증되어 실제 현장에 대한 적용성을 검증하기 어려웠다. 따라서 본 논문에서는 이러한 한계를 극복하기 위하여 비균열 물체 학습에 기반한 6단계 터널 균열 탐지 딥러닝 모델 개발 프레임워크를 제안한다. 제안된 프레임워크는 터널에서 취득된 이미지 내 균열 탐색, 픽셀 단위 균열 라벨링, 딥러닝 모델 학습, 비균열 물체 수집, 비균열 물체 재학습, 최종 학습 데이터 구축의 총 6단계로 이루어진다. 제안된 프레임워크를 이용하여 개발된 균열 탐지 딥러닝 모델 개발을 수행하였으며, 일반 균열 1561장, 비균열 206장으로 개별 물체 세분화(Instance Segmentation) 모델인 Cascade Mask R-CNN을 학습시켰다. 학습된 모델의 현장 적용성을 검토하기 위하여 전선, 전등 등을 포함하는 약 200m 길이의 실제 터널에서 균열 탐지를 수행하였다. 실험 결과 학습된 모델은 99% 정밀도와 92%의 재현율을 나타내며 뛰어난 현장 적용성을 나타내었다.
국내 대부분의 선구에 부설된 콘크리트침목은 적절히 유지관리되지 않을 경우 열차 운행의 안전성을 심각하게 위협하는 요소가 될 수 있다. 이 연구에서는 최근 가장 강력한 적응성(adaptive)을 갖는 기법으로 활용 범위를 넓히고 있는 Adaboost를 이용하여 고해상도카메라로 촬영한 침목이미지에서 균열을 자동검출할 수 있는 알고리즘을 개발하였다. 개발된 알고리즘은 실제 침목에 발생한 균열 및 비균열 이미지를 분석한 후 도출한 균열특징을 이용하여 학습하였다. 침목균열 자동검출 알고리즘의 적용성은 48개의 학습이미지와 11개의 비학습이미지를 이용하여 검토하였다. 검토 결과 학습이미지와 비학습이미지 모두 균열폭과 균열길이에 대한 인식률이 90% 이상으로 나타났으며, 충분한 균열인식 성능을 갖는 것으로 나타났다.
이 연구의 목적은 화상처리 기법과 신경회로망을 이용하여 다섯가지 균열 패턴 즉, 횡방향, 종방향, 대각선($-45^{\circ}$) 대각선($+45^{\circ}$) 그리고 비방향성 균열의 패턴을 인식할 수 있는 기법을 제안하는 것이다. 제안된 화상처리 알고리즘과 인공 신경회로망 모델은 MATLAB 언어를 이용하여 구현하였다. 인공 신경회로망의 입력층에 들어갈 패턴인자는 Total projection technique를 통해 구하였으며, 인공 신경회로망의 구조(은닉층의 수와 은닉노드의 수)와 가중치 값은 가상 균열 화상을 사용하여 학습을 통해 결정하였다. 인공 신경회로망의 학습은 Bayesian regularization 기법을 도입함으로써 과적합 문제가 발생하지 않도록 하였으며, 이 연구에서 제안한 기법의 적합성을 판정하기 위하여 총 38개의 실제 균열 화상을 사용하여 시험하였다. 검증 시험 결과내에서는 이 연구에서 제안한 기법이 사람의 균열 패턴 인식결과와 정확히 일치하는 결과것으로 나타났다.
본 연구에서는 비지도 이상 탐지 방법을 변형한 U-Net 기반의 이미지 복원 기법을 통해 한정적인 데이터를 활용한 균열 탐지 방안을 제안한다. 콘크리트 균열은 다양한 원인으로 인해 발생하며, 장기적으로 구조물의 심각한 손상을 초래할 수 있는 요소이다. 일반적으로 균열 조사는 검사원의 육안으로 판단하는 외관 검사법을 사용하는데, 이는 판단에 객관성이 떨어지며 인적 오류 발생 가능성이 크다. 따라서 객관적이고 정확한 이미지 분석 처리를 통한 방법이 요구된다. 최근에는 균열을 신속하고 정밀하게 탐지할 수 있도록 딥러닝을 활용한 기술들이 연구되고 있다. 하지만 일반적인 균열자료에 비해 점검 대상물에 대한 데이터는 한정적이므로 이를 활용한 기존 균열 탐지 모델의 성능은 제한적인 경우가 많다. 따라서 본 연구에서는 비지도 이상 탐지 방법을 사용해 점검 대상물에 대한 데이터를 증강하여 해당 데이터를 사용하여 학습한 결과, 정확도 98.78%, 조화평균(F1_Score) 82.67%의 성능을 확인하였다.
인프라 구조물은 대부분 경제 성장기에 완공되었다. 이러한 인프라 구조물은 최근 들어 공용연수가 점차 증가하고 있어 노후 구조물의 비중이 점차 증가하고 있다. 이러한 노후 구조물은 설계 당시의 기능과 성능이 저하될 수 있고 안전사고로까지 이어질 수 있다. 이를 예방하기 위해서는 정확한 점검과 적절한 보수가 필수적이다. 이를 위해서는 우선 미세한 균열까지 정확히 탐지할 수 있도록 컴퓨터 비전과 딥러닝 기술에 수요가 증가하고 있다. 하지만 딥러닝 알고리즘은 다수의 학습 데이터가 있어야 한다. 특히 영상 내 균열의 위치를 표시한 라벨 영상은 필수적이다. 이러한 라벨 영상을 다수 확보하기 위해서는 많은 노동력과 시간이 필요한 실정이다. 이러한 비용을 절감하고 탐지 정확도를 높이기 위해서 본 연구에서는 mean teacher 방식의 학습 구조를 제안하였다. 이 학습 구조는 900장의 라벨 영상 데이터 세트와 3000장의 비라벨 영상 데이터 세트로 훈련되었다. 학습된 균열 탐지 신경망 모델은 300여장의 실험용 데이터 세트를 통해 평가되었고 탐지 정확도는 89.23%의 mean intersection over union과 89.12%의 F1 score를 기록하였다. 이 설험을 통해 지도학습과 비교하여 탐지 성능이 향상된 것을 확인하였다. 향후에 이러한 방법은 라벨 영상을 확보하는데 필요한 비용을 절감하는데 활용될 것으로 기대한다.
국내 산업화가 들어선 후 산업화 당시 지었던 낙후된 건물의 증가에 따라 구조물의 손상 조사 및 검사 방법의 수요가 늘어나고 있다. 일반적으로 구조물의 손상은 전문 검사원이 현장에서 직접 측량도구와 시각적인 방식으로 검사한다. 그러나 전문 검사원들이 직접 조사하는 수고에 비해 균열을 검사하는 방식 자체가 단순하고, 일반 사람이 검사하기에는 객관성이 떨어지는 한계가 있어 균열을 자동적으로 검출함으로써 객관성과 편의성을 보장할 기술이 필요하다. 본 연구에서는 이미지 기반으로 다양한 환경에서의 외벽 균열을 검출할 수 있는 딥러닝 모델 개발을 소개한다. 균열 검출을 위해 다양한 외벽 균열 관련 데이터셋을 확보 및 구축하고 각 데이터셋의 검출 정보를 보완할 반자동(semi-auto) 라벨링 작업을 수행하였다. 두 번째로 기존 높은 검출 성능을 보였던 모델들을 선정 및 비교하여 YOLO v5 모델을 최종적으로 선정하였고, 도메인이 각각 다른 데이터셋에 대한 교차 학습을 통해 각 데이터셋의 mAP의 편차가 31%에서 11%로 좁히는 작업을 수행하였다. 이를 통해 실제 상황에서의 균열 영상에서 균열을 검출할 수 있는 측량 시스템을 개발함으로써 실질적인 검사의 도구로 활용될 수 있길 기대한다.
해당 논문의 목적은 균열밀도 산정 시 독립변수로 설정한 값이 얼마나 중요하게 작용하는지를 기계학습 기반의 알고리즘으로 분석하는 것이다. 논문에서 사용한 알고리즘은 random forest와 SHAP이며, 독립변수는 압축파 속도, 전단파 속도, 간극률 그리고 포아송 비로 결정하였다. 암석 시료는 건설현장에서 채취하였으며, 원기둥 형태로 가공하여 각 입력 물성치의 획득이 용이하게 고려하였다. 다수의 특징이 포함된 독립 및 종속 변수 값을 얻고자 인위적인 풍화를 진행하였으며, 총 12회 진행하였다. 2가지 알고리즘 적용 결과 간극률이 균열밀도 산정시 매우 중요한 독립변수로 나타났으며, 전단파 속도가 상대적으로 낮은 영향을 미치는 인자로 나타났다. 이와 같은 결과는 독립변수로 설정한 4개의 물성치로 충분히 균열밀도를 추정할 수 있음을 시사하며 random forest 및 SHAP과 같은 알고리즘을 통해 설정된 독립 변수가 적절하게 구성되었는지 확인할 수 있는 방법론도 제시하였다.
본 논문에서는 암석시료의 CT 촬영 이미지상의 균열을 자동으로 탐지하는 새로운 인공지능 딥러닝 기법을 제안한다. 본 제안 기법은 2단계 딥러닝 객체인식 알고르즘인 Faster R-CNN을 기반으로 회전 가능한 경계박스(bounding box) 개념을 도입하여 알고리즘을 개조하였다. 회전 경계박스의 도입은 관심 균열 영역 밖의 배경의 불균질성 및 균열의 크기와 형태에 영향을 받는 딥러닝 객체인식기법 상의 고유한 어려움을 극복하기 위한 핵심 역할을 한다. 본 회전형 경계박스의 사용은 일반적으로 사용되는 영상 수평축과 평행한 경계박스 사용의 경우와 비교하여 긴 형태의 균열 형상 특성에 매우 잘 부합된다. 즉, 좋지않은 영향을 끼치는 경계박스 내 균열 이외 배경영역의 비율을 최소화 시킬 수 있다. 이외에도, 회전 경계박스의 추가적인 이점은 인식된 균열의 방향에 따라 회전하여 추론되는 경계박스를 통해 균열의 방향과 길이에 대한 정보를 직접적으로 얻을 수 있다. 본 제안기법의 적용성을 검증하기 위하여, 이미지상에서 매우 불균질한 화강암 시료에 인공적으로 균열을 발생시킨 다수의 암석시료 영상을 딥러닝 학습에 사용하고 추론 성능 실험을 진행하였다. 그 외에도, 동일 조건에서 사암과 셰일 암석 시료에도 적용하여 검증하였다. 결론적으로, 제안된 기법을 통해 균열 객체 인식의 평균 추론정확도(mAP)값이 0.89 정도 수준의 우수한 추론 성능을 보였으며, 기존 기법에 비해 추론된 경계박스 내 균열과 배경 영역의 비율 측면에서 배경의 비율이 획기적으로 최소화되는 유리한 추론 검증 결과를 보였다.
온도프리스트레싱 공법은 강합성거더교 또는 강구조물에 인위적인 온도경사를 가하여 프리스트레싱력을 도입하기 위해 개발된 공법으로, 연속 강합성거더교에 적용할 경우 부모멘트 발생지점인 연속지점부 부근의 바닥판에 프리스트레스를 도입함으로써 콘크리트 바닥판의 인장균열을 억제하는 한편, 교축방향 보강철근 사용량 및 강거더 단면을 감소시킬 수 있어 경제성과 시공성의 향상이 가능한 공법이다. 이전의 연구에서 가열구간을 설정하기 위해 사용한 시행오차법은 비효율적인 것으로 온도프리스트레싱 공법을 적용한 설계가 효율적으로 이루어지기 위해서는 보다 합리적인 적정 가열구간의 설정기법이 필요하다. 본 연구에서는 이러한 문제점을 개선하기 위하여 패턴인식, 최적화, 진단 및 예측 등을 수행하는데 많이 사용되고 있는 인공신경망 이론을 적용하여 온도프리스트레싱 공법을 적용한 연속 강합성거더교의 가열구간을 효과적이고 경제적으로 설정하는 기법을 제안하고자 한다. 인공신경망 이론을 학습시키기 위한 학습알고리즘으로는 일반적으로 널리 사용되는 오차역전파 알고리즘을 사용하였으며, 이를 이용하여 2경간 및 3경간 연속 강합성거더교의 가열구간을 예측하고 유한요소해석과의 비교를 통하여 학습알고리즘의 특성 및 예측의 정확도를 분석하였다.
건축물이나 교량과 같은 RC 구조물의 경우, 다양한 유해 환경하의 재료적인 열화나 구조적 문제로 콘크리트의 노후화 및 손상이 발생하게 된다. 콘크리트의 균열이나 철근의 부식, 구조 단면의 변형 등은 구조적 안전성 저하 및 구조물 거동 특성 변화의 주요 원인이 되기도 한다. 따라서 이와 같은 콘크리트 구조물의 보수 보강을 위하여, 효과적이고 적용이 간편한 공법의 개발이 콘크리트 분야의 중요한 연구 과제 중의 하나로 인식되어 왔다. 다양한 보수 보강 기법들이 과거 수십 년 동안 개발되어 적용되고 있으며, 이중에서도 최근 FRP 복합 재료를 구조물의 외부에 접착시키는 방법을 통한 보강 방식이 많이 사용되고 있다. 이 연구는 인공 지능(AI)의 일종인 뉴로퍼지모델(ANFIS) 을 이용하여, FRP로 보강된 원주형 콘크리트 부재의 보강 효과를 분석하는데 그 목적이 있다. ANFIS 모델을 이 연구에 적용하기 위하여, 기존 연구 자료 및 실험에서 얻은 결과를 통해 학습 데이터와 시험 데이터 세트를 구축하였다. 이 연구에서 구축된 ANFIS 모델은 기존 피보강 콘크리트의 압축강도, 보강재의 두께, 보강재의 보강 겹수, 보강재의 탄성계수, 보강재의 파단강도 및 보강재와 피보강재의 체적비, 피보강재의 부재크기를 입력 자료의 파라미터로 사용하여, 압축강도, 변형률, 2차탄성계수 등을 예측하는 방식으로 활용될 수 있으며, ANFIS 모델을 통하여 예측된 결과를 기존 연구자들이 제안한 FRP 보강 콘크리트 부재의 구성 방정식과 비교할 때 더 높은 정확도로 예측이 가능함을 확인할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.