• 제목/요약/키워드: 비균열 학습

검색결과 11건 처리시간 0.02초

영상장비와 딥러닝을 이용한 고속도로 터널 균열 탐지 시스템 개발 (Development of Crack Detection System for Highway Tunnels using Imaging Device and Deep Learning)

  • 김병현;조수진;채홍제;김홍기;강종하
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권4호
    • /
    • pp.65-74
    • /
    • 2021
  • 빠르게 증가하는 노후 터널을 효율적으로 관리하기 위하여 최근 영상장비를 이용한 점검 방법론들이 많이 제안되고 있다. 하지만 기존의 방법론들은 대부분 국한된 영역에서 검증을 수행하였을 뿐 아니라, 다른 물체들이 존재하지 않는 깨끗한 콘크리트 표면에서 검증되어 실제 현장에 대한 적용성을 검증하기 어려웠다. 따라서 본 논문에서는 이러한 한계를 극복하기 위하여 비균열 물체 학습에 기반한 6단계 터널 균열 탐지 딥러닝 모델 개발 프레임워크를 제안한다. 제안된 프레임워크는 터널에서 취득된 이미지 내 균열 탐색, 픽셀 단위 균열 라벨링, 딥러닝 모델 학습, 비균열 물체 수집, 비균열 물체 재학습, 최종 학습 데이터 구축의 총 6단계로 이루어진다. 제안된 프레임워크를 이용하여 개발된 균열 탐지 딥러닝 모델 개발을 수행하였으며, 일반 균열 1561장, 비균열 206장으로 개별 물체 세분화(Instance Segmentation) 모델인 Cascade Mask R-CNN을 학습시켰다. 학습된 모델의 현장 적용성을 검토하기 위하여 전선, 전등 등을 포함하는 약 200m 길이의 실제 터널에서 균열 탐지를 수행하였다. 실험 결과 학습된 모델은 99% 정밀도와 92%의 재현율을 나타내며 뛰어난 현장 적용성을 나타내었다.

패턴인식을 이용한 콘크리트침목의 자동균열검출 알고리즘 개발 (Development of Automatic Crack Identification Algorithm for a Concrete Sleeper Using Pattern Recognition)

  • 김민수;김경호;최상현
    • 한국철도학회논문집
    • /
    • 제20권3호
    • /
    • pp.374-381
    • /
    • 2017
  • 국내 대부분의 선구에 부설된 콘크리트침목은 적절히 유지관리되지 않을 경우 열차 운행의 안전성을 심각하게 위협하는 요소가 될 수 있다. 이 연구에서는 최근 가장 강력한 적응성(adaptive)을 갖는 기법으로 활용 범위를 넓히고 있는 Adaboost를 이용하여 고해상도카메라로 촬영한 침목이미지에서 균열을 자동검출할 수 있는 알고리즘을 개발하였다. 개발된 알고리즘은 실제 침목에 발생한 균열 및 비균열 이미지를 분석한 후 도출한 균열특징을 이용하여 학습하였다. 침목균열 자동검출 알고리즘의 적용성은 48개의 학습이미지와 11개의 비학습이미지를 이용하여 검토하였다. 검토 결과 학습이미지와 비학습이미지 모두 균열폭과 균열길이에 대한 인식률이 90% 이상으로 나타났으며, 충분한 균열인식 성능을 갖는 것으로 나타났다.

콘크리트 표면 균열 패턴인식 기법 개발 (A Technique for Pattern Recognition of Concrete Surface Cracks)

  • 이방연;박연동;김진근
    • 콘크리트학회논문집
    • /
    • 제17권3호
    • /
    • pp.369-374
    • /
    • 2005
  • 이 연구의 목적은 화상처리 기법과 신경회로망을 이용하여 다섯가지 균열 패턴 즉, 횡방향, 종방향, 대각선($-45^{\circ}$) 대각선($+45^{\circ}$) 그리고 비방향성 균열의 패턴을 인식할 수 있는 기법을 제안하는 것이다. 제안된 화상처리 알고리즘과 인공 신경회로망 모델은 MATLAB 언어를 이용하여 구현하였다. 인공 신경회로망의 입력층에 들어갈 패턴인자는 Total projection technique를 통해 구하였으며, 인공 신경회로망의 구조(은닉층의 수와 은닉노드의 수)와 가중치 값은 가상 균열 화상을 사용하여 학습을 통해 결정하였다. 인공 신경회로망의 학습은 Bayesian regularization 기법을 도입함으로써 과적합 문제가 발생하지 않도록 하였으며, 이 연구에서 제안한 기법의 적합성을 판정하기 위하여 총 38개의 실제 균열 화상을 사용하여 시험하였다. 검증 시험 결과내에서는 이 연구에서 제안한 기법이 사람의 균열 패턴 인식결과와 정확히 일치하는 결과것으로 나타났다.

A method for concrete crack detection using U-Net based image inpainting technique

  • Kim, Su-Min;Sohn, Jung-Mo;Kim, Do-Soo
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권10호
    • /
    • pp.35-42
    • /
    • 2020
  • 본 연구에서는 비지도 이상 탐지 방법을 변형한 U-Net 기반의 이미지 복원 기법을 통해 한정적인 데이터를 활용한 균열 탐지 방안을 제안한다. 콘크리트 균열은 다양한 원인으로 인해 발생하며, 장기적으로 구조물의 심각한 손상을 초래할 수 있는 요소이다. 일반적으로 균열 조사는 검사원의 육안으로 판단하는 외관 검사법을 사용하는데, 이는 판단에 객관성이 떨어지며 인적 오류 발생 가능성이 크다. 따라서 객관적이고 정확한 이미지 분석 처리를 통한 방법이 요구된다. 최근에는 균열을 신속하고 정밀하게 탐지할 수 있도록 딥러닝을 활용한 기술들이 연구되고 있다. 하지만 일반적인 균열자료에 비해 점검 대상물에 대한 데이터는 한정적이므로 이를 활용한 기존 균열 탐지 모델의 성능은 제한적인 경우가 많다. 따라서 본 연구에서는 비지도 이상 탐지 방법을 사용해 점검 대상물에 대한 데이터를 증강하여 해당 데이터를 사용하여 학습한 결과, 정확도 98.78%, 조화평균(F1_Score) 82.67%의 성능을 확인하였다.

균열 탐지의 의미론적 분할을 위한 Mean Teacher 학습 구조 최적화 (Mean Teacher Learning Structure Optimization for Semantic Segmentation of Crack Detection)

  • 심승보
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권5호
    • /
    • pp.113-119
    • /
    • 2023
  • 인프라 구조물은 대부분 경제 성장기에 완공되었다. 이러한 인프라 구조물은 최근 들어 공용연수가 점차 증가하고 있어 노후 구조물의 비중이 점차 증가하고 있다. 이러한 노후 구조물은 설계 당시의 기능과 성능이 저하될 수 있고 안전사고로까지 이어질 수 있다. 이를 예방하기 위해서는 정확한 점검과 적절한 보수가 필수적이다. 이를 위해서는 우선 미세한 균열까지 정확히 탐지할 수 있도록 컴퓨터 비전과 딥러닝 기술에 수요가 증가하고 있다. 하지만 딥러닝 알고리즘은 다수의 학습 데이터가 있어야 한다. 특히 영상 내 균열의 위치를 표시한 라벨 영상은 필수적이다. 이러한 라벨 영상을 다수 확보하기 위해서는 많은 노동력과 시간이 필요한 실정이다. 이러한 비용을 절감하고 탐지 정확도를 높이기 위해서 본 연구에서는 mean teacher 방식의 학습 구조를 제안하였다. 이 학습 구조는 900장의 라벨 영상 데이터 세트와 3000장의 비라벨 영상 데이터 세트로 훈련되었다. 학습된 균열 탐지 신경망 모델은 300여장의 실험용 데이터 세트를 통해 평가되었고 탐지 정확도는 89.23%의 mean intersection over union과 89.12%의 F1 score를 기록하였다. 이 설험을 통해 지도학습과 비교하여 탐지 성능이 향상된 것을 확인하였다. 향후에 이러한 방법은 라벨 영상을 확보하는데 필요한 비용을 절감하는데 활용될 것으로 기대한다.

다양한 외벽 균열에 강인한 딥러닝 검출 모델 개발 (Robust Detection Deep Learning Model in the Various Exterior Wall Cracks)

  • 김경영;이호령;김동주
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.53-56
    • /
    • 2021
  • 국내 산업화가 들어선 후 산업화 당시 지었던 낙후된 건물의 증가에 따라 구조물의 손상 조사 및 검사 방법의 수요가 늘어나고 있다. 일반적으로 구조물의 손상은 전문 검사원이 현장에서 직접 측량도구와 시각적인 방식으로 검사한다. 그러나 전문 검사원들이 직접 조사하는 수고에 비해 균열을 검사하는 방식 자체가 단순하고, 일반 사람이 검사하기에는 객관성이 떨어지는 한계가 있어 균열을 자동적으로 검출함으로써 객관성과 편의성을 보장할 기술이 필요하다. 본 연구에서는 이미지 기반으로 다양한 환경에서의 외벽 균열을 검출할 수 있는 딥러닝 모델 개발을 소개한다. 균열 검출을 위해 다양한 외벽 균열 관련 데이터셋을 확보 및 구축하고 각 데이터셋의 검출 정보를 보완할 반자동(semi-auto) 라벨링 작업을 수행하였다. 두 번째로 기존 높은 검출 성능을 보였던 모델들을 선정 및 비교하여 YOLO v5 모델을 최종적으로 선정하였고, 도메인이 각각 다른 데이터셋에 대한 교차 학습을 통해 각 데이터셋의 mAP의 편차가 31%에서 11%로 좁히는 작업을 수행하였다. 이를 통해 실제 상황에서의 균열 영상에서 균열을 검출할 수 있는 측량 시스템을 개발함으로써 실질적인 검사의 도구로 활용될 수 있길 기대한다.

  • PDF

균열밀도 산정을 위한 독립 변수 간의 관계 고찰 (Consideration of the Relationship between Independent Variables for the Estimation of Crack Density)

  • 윤형구
    • 한국지반공학회논문집
    • /
    • 제40권4호
    • /
    • pp.137-144
    • /
    • 2024
  • 해당 논문의 목적은 균열밀도 산정 시 독립변수로 설정한 값이 얼마나 중요하게 작용하는지를 기계학습 기반의 알고리즘으로 분석하는 것이다. 논문에서 사용한 알고리즘은 random forest와 SHAP이며, 독립변수는 압축파 속도, 전단파 속도, 간극률 그리고 포아송 비로 결정하였다. 암석 시료는 건설현장에서 채취하였으며, 원기둥 형태로 가공하여 각 입력 물성치의 획득이 용이하게 고려하였다. 다수의 특징이 포함된 독립 및 종속 변수 값을 얻고자 인위적인 풍화를 진행하였으며, 총 12회 진행하였다. 2가지 알고리즘 적용 결과 간극률이 균열밀도 산정시 매우 중요한 독립변수로 나타났으며, 전단파 속도가 상대적으로 낮은 영향을 미치는 인자로 나타났다. 이와 같은 결과는 독립변수로 설정한 4개의 물성치로 충분히 균열밀도를 추정할 수 있음을 시사하며 random forest 및 SHAP과 같은 알고리즘을 통해 설정된 독립 변수가 적절하게 구성되었는지 확인할 수 있는 방법론도 제시하였다.

회전 경계박스 기능의 변형 FASTER R-CNN 딥러닝 알고리즘을 이용한 암석 CT 영상 내 자동 균열 탐지 (Automatic Fracture Detection in CT Scan Images of Rocks Using Modified Faster R-CNN Deep-Learning Algorithm with Rotated Bounding Box)

  • 추엔 팜;장리;염선;신휴성
    • 터널과지하공간
    • /
    • 제31권5호
    • /
    • pp.374-384
    • /
    • 2021
  • 본 논문에서는 암석시료의 CT 촬영 이미지상의 균열을 자동으로 탐지하는 새로운 인공지능 딥러닝 기법을 제안한다. 본 제안 기법은 2단계 딥러닝 객체인식 알고르즘인 Faster R-CNN을 기반으로 회전 가능한 경계박스(bounding box) 개념을 도입하여 알고리즘을 개조하였다. 회전 경계박스의 도입은 관심 균열 영역 밖의 배경의 불균질성 및 균열의 크기와 형태에 영향을 받는 딥러닝 객체인식기법 상의 고유한 어려움을 극복하기 위한 핵심 역할을 한다. 본 회전형 경계박스의 사용은 일반적으로 사용되는 영상 수평축과 평행한 경계박스 사용의 경우와 비교하여 긴 형태의 균열 형상 특성에 매우 잘 부합된다. 즉, 좋지않은 영향을 끼치는 경계박스 내 균열 이외 배경영역의 비율을 최소화 시킬 수 있다. 이외에도, 회전 경계박스의 추가적인 이점은 인식된 균열의 방향에 따라 회전하여 추론되는 경계박스를 통해 균열의 방향과 길이에 대한 정보를 직접적으로 얻을 수 있다. 본 제안기법의 적용성을 검증하기 위하여, 이미지상에서 매우 불균질한 화강암 시료에 인공적으로 균열을 발생시킨 다수의 암석시료 영상을 딥러닝 학습에 사용하고 추론 성능 실험을 진행하였다. 그 외에도, 동일 조건에서 사암과 셰일 암석 시료에도 적용하여 검증하였다. 결론적으로, 제안된 기법을 통해 균열 객체 인식의 평균 추론정확도(mAP)값이 0.89 정도 수준의 우수한 추론 성능을 보였으며, 기존 기법에 비해 추론된 경계박스 내 균열과 배경 영역의 비율 측면에서 배경의 비율이 획기적으로 최소화되는 유리한 추론 검증 결과를 보였다.

인공신경망을 이용한 온도프리스트레싱 공법의 적정 가열구간 설정에 관한 연구 (Determination of Optimum Heating Regions for Thermal Prestressing Method Using Artificial Neural Network)

  • 김준환;안진희;김강미;김상효
    • 한국강구조학회 논문집
    • /
    • 제19권6호
    • /
    • pp.695-702
    • /
    • 2007
  • 온도프리스트레싱 공법은 강합성거더교 또는 강구조물에 인위적인 온도경사를 가하여 프리스트레싱력을 도입하기 위해 개발된 공법으로, 연속 강합성거더교에 적용할 경우 부모멘트 발생지점인 연속지점부 부근의 바닥판에 프리스트레스를 도입함으로써 콘크리트 바닥판의 인장균열을 억제하는 한편, 교축방향 보강철근 사용량 및 강거더 단면을 감소시킬 수 있어 경제성과 시공성의 향상이 가능한 공법이다. 이전의 연구에서 가열구간을 설정하기 위해 사용한 시행오차법은 비효율적인 것으로 온도프리스트레싱 공법을 적용한 설계가 효율적으로 이루어지기 위해서는 보다 합리적인 적정 가열구간의 설정기법이 필요하다. 본 연구에서는 이러한 문제점을 개선하기 위하여 패턴인식, 최적화, 진단 및 예측 등을 수행하는데 많이 사용되고 있는 인공신경망 이론을 적용하여 온도프리스트레싱 공법을 적용한 연속 강합성거더교의 가열구간을 효과적이고 경제적으로 설정하는 기법을 제안하고자 한다. 인공신경망 이론을 학습시키기 위한 학습알고리즘으로는 일반적으로 널리 사용되는 오차역전파 알고리즘을 사용하였으며, 이를 이용하여 2경간 및 3경간 연속 강합성거더교의 가열구간을 예측하고 유한요소해석과의 비교를 통하여 학습알고리즘의 특성 및 예측의 정확도를 분석하였다.

FRP로 보강된 콘크리트 부재의 압축응력-변형률 예측을 위한 뉴로퍼지모델의 적용 (Prediction of Ultimate Strength and Strain of Concrete Columns Retrofitted by FRP Using Adaptive Neuro-Fuzzy Inference System)

  • 박태원;나웅진;권성준
    • 콘크리트학회논문집
    • /
    • 제22권1호
    • /
    • pp.19-27
    • /
    • 2010
  • 건축물이나 교량과 같은 RC 구조물의 경우, 다양한 유해 환경하의 재료적인 열화나 구조적 문제로 콘크리트의 노후화 및 손상이 발생하게 된다. 콘크리트의 균열이나 철근의 부식, 구조 단면의 변형 등은 구조적 안전성 저하 및 구조물 거동 특성 변화의 주요 원인이 되기도 한다. 따라서 이와 같은 콘크리트 구조물의 보수 보강을 위하여, 효과적이고 적용이 간편한 공법의 개발이 콘크리트 분야의 중요한 연구 과제 중의 하나로 인식되어 왔다. 다양한 보수 보강 기법들이 과거 수십 년 동안 개발되어 적용되고 있으며, 이중에서도 최근 FRP 복합 재료를 구조물의 외부에 접착시키는 방법을 통한 보강 방식이 많이 사용되고 있다. 이 연구는 인공 지능(AI)의 일종인 뉴로퍼지모델(ANFIS) 을 이용하여, FRP로 보강된 원주형 콘크리트 부재의 보강 효과를 분석하는데 그 목적이 있다. ANFIS 모델을 이 연구에 적용하기 위하여, 기존 연구 자료 및 실험에서 얻은 결과를 통해 학습 데이터와 시험 데이터 세트를 구축하였다. 이 연구에서 구축된 ANFIS 모델은 기존 피보강 콘크리트의 압축강도, 보강재의 두께, 보강재의 보강 겹수, 보강재의 탄성계수, 보강재의 파단강도 및 보강재와 피보강재의 체적비, 피보강재의 부재크기를 입력 자료의 파라미터로 사용하여, 압축강도, 변형률, 2차탄성계수 등을 예측하는 방식으로 활용될 수 있으며, ANFIS 모델을 통하여 예측된 결과를 기존 연구자들이 제안한 FRP 보강 콘크리트 부재의 구성 방정식과 비교할 때 더 높은 정확도로 예측이 가능함을 확인할 수 있다.