• Title/Summary/Keyword: 블리딩량

Search Result 15, Processing Time 0.027 seconds

Determination of Optimal Mixture Proportion of Segregation Reducing Type Superplasticizer for High Fluidity Concrete (고유동 콘크리트용 분리저감형 유동화제의 최적배합비 결정)

  • 한천구;김성수;손성운
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.275-282
    • /
    • 2002
  • High fluidity concrete needs high dosage of superplasticizer to acquire sufficient fluidity and high contents of fine powder and viscosity agents to prevent segregation. But it requires high manufacturing cost and has difficult in quality control. Therefore, in this paper, determination of optimal mixture proportion of segregation type superplasticizer for high fluidity concrete and manufacturing high fluidity concrete by applying developed segregation reducing type superplasticizer are discussed using flowing concrete method. According to test results, as dosage of superplasticizer increases, it shows that fluidity and bleeding increase, while air contents and ratio of segregation resistance decrease. It also shows that adding viscosity agent into it reduce bleeding and improve segregation resistance. Dosage of AE agent into it containing viscosity agent recovers loss of air contents during flowing procedure. Combination of proper contents of superplasticizer, viscosity agent and AE agent make possible to develope segregation reducing type superplasticizer Compressive strength of high fluidity concrete applying flowing method with it is higher than that of base concrete. No differences of compressive strength between compacting methods are found.

An Experimental Study on the Properties of Concrete using Bottom Ash according to Water-Cement Ratio (물시멘트비에 따른 바텀애시를 사용한 콘크리트의 특성에 관한 실험적 연구)

  • 이종호;김재환;김용로;강석표;최세진;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.57-60
    • /
    • 2002
  • Recently, the coal ash production has been increased by increase of consumption of electric power. So it is important to find a reclaimed place and treatment utility for treating coal ash. Accordingly, in this study we performed an experimental study to compare and analyze the Properties of concrete according to W/C and bottom ash replacement ratio. As a result of this study, it was found that the bleeding content was decreased according to decrease of W/C and increase of bottom ash replacement ratio, and the compressive strength of concrete using bottom ash was similar to plain concrete(replacement ratio 0%).

  • PDF

An Experimental Study on the Construction Performances and Economical Evaluation of the Self-compacting Concrete by Cementitious Materials (결합재에 따른 자기충전 콘크리트의 시공성 및 경제성 평가에 관한 실험적 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.315-322
    • /
    • 2017
  • The purpose of this study is to investigate experimentally the construction performances and economical evaluation of the self-compacting concrete in actual site work after selecting the optimum mix proportions according to cementitious materials. Slag cement type of 46.5% slag powder and belite cement of 51.4% $C_2S$ content, lime stone powder as binders are selected for site experiment including water cement ratio. Also, test items for optimum mix proportion are as followings ; (1) Slump flow, 500 mm reaching time, V-type flowing time and U-box height (2) Setting time, bleeding, shortening depth and adiabatic temperature rising (3) Mixing time in plant (4) Concrete quantity and cost, quality control in actual concrete work. As test results, (4) Optimum water-cement ratio ; Slag cement type 41.0% and belite cement 51.0% (2) Setting time and bleeding finishing time of slag cement are faster, bleeding content of slag cement is higher, shortening depth and adiabatic temperature rising of belite cement type are lower (3) Optimum mixing time in batcher plant is 75 seconds and concrete productive capacity is about $100{\sim}110m^3/hr$. (4) Belite cement type is lower than slag cement type in material cost 14.0%, and concrete quantity in actual concreting work save 3.3% in case of belite cement type. Therefore, self-compacting concrete of belite cement type is definitely superior to that of slag cement type in various test items without compressive strength development.

An Experimental Study on the Engineering Properties of Concrete according to W/C and Replacement Ratio of Bottom Ash (물-시멘트비 및 바텀애쉬 대체율에 따른 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Choi, Se-Jin;Jeong, Yong;Oh, Bok-Jin;Kim, Moo-Han
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.840-847
    • /
    • 2003
  • Recently, the coal-ash production has been increased by increase of consumption of electric power. So it is important to secure a reclaimed land and treatment utility for coal-ash. This is an experimental study to compare and analyze the engineering properties of concrete according to W/C and replacement ratio of bottom ash. For this purpose, the mix proportions of concrete according to W/C(40, 50, 60%) and replacement ratio of bottom ash(0, 10, 20, 35, 50%) were established, and then tested for slump, chloride content, setting time, bleeding content, compressive strength. Also the durability test of concrete with W/E 60% was performed. According to test results, it was found that the bleeding content of concrete decreased as the replacement ratio of bottom ash increased. And the chloride content of concrete using the bottom ash increased as the replacement ratio of bottom ash increased, but it is satisfied with the chloride content of fresh concrete $0.30kg/m^3$ below("concrete standard specification" regulation value). The compressive strength of concrete using the bottom ash was similar to that of BA0 concrete after 28 days of curing and the carbonation depth of concrete was increased according to increase of the replacement ratio of bottom ash.

Analysis of the Characteristics of Manufactured Concrete, according to the Type of Admixture used when Remixing and Placing it (혼화제 종류별로 제조된 콘크리트의 재 혼합 타설시 특성 분석)

  • Ryu, Hyun-Gi;Shin, Sang-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.95-102
    • /
    • 2010
  • In recent years, the demand for the development of high quality and cost effective materials, as well as the competition to ensure a diverse and sufficient amount of ready-mixed concrete, has been increasing rapidly. In this experiment, concretes made with different admixtures are blended with each other in different combinations and ratios, in order to identify potential problems. The first test was a slump level test, in which all of the concretes met the required numbers, as they also did in the test for air content. Plain organic acid concrete scored the highest in bleeding amount, but organic acid mix in general showed a similar outcome. In the early measurement of compressive strength, plain naphthalene concrete was the strongest. Of the blends, the 5:5 mix of organic acid and naphthalene was the strongest. In the standard measurement, the 5:5 mix of naphthalene and lignin was the strongest. Tensile strength tests revealed similar results. Length change rate proved to be greater in blended concrete than in plain concrete, and dry shrinkage rate was highest in the 7:3 ratio blends. Through SEM photo analysis, it was confirmed that the 7:3 ratio blends contained more micro-voids. In conclusion, with the exception of a specific few combinations, it was found that the blending of different types of concrete is undesirable due to the delayed coagulation time as well as the early decrease in strength.

Properties of Bleeding Reduction of Concrete Using AE Water Reducing Agent for Reduction of Bleeding (블리딩저감용 AE감수제를 사용한 콘크리트의 블리딩 저감 특성)

  • Kim, Ki-Hoon;Hwang, Yin-Seong;La, Woon;Im, Ju Hyeuk;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.69-72
    • /
    • 2003
  • This study is intended to investigate the fundamental properties of concrete which AE water reducing agent for reduction of bleeding is used, and the properties of bleeding reduction. According to the results, when the adding ratio of AE water reducing agent for reduction of bleeding increases, a range of normal fluidity and aimed air content arc satisfied, setting time is faster than that of normal AE water reducing agent. And bleeding amount decreases, bleeding speed is highest between 60 and 90 min, and sinking depth increases drastically in 60 min. When, AE water reducing agent for reduction of bleeding is added, compressive strength shows a slight variation by air content, but there is not a large influence by addition of AE water reducing agent for reduction of bleeding. Synthetically, it proves that AE water reducing agent for reduction of bleeding satisfies aimed air content in the range of normal slump and can reduce only bleeding without quality variation of compressive strength.

  • PDF

Properties of Bleeding Reduction of Concrete Using AE Water Reducing Agent for Reduction of Bleeding (블리딩저감용 AE감수제를 사용한 콘크리트의 블리딩 저감 특성)

  • Kim, Ki-Hoon;Hwang, Yin-Seong;La, Woon;Im, Ju-Hyeuk;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.69-72
    • /
    • 2003
  • This study is intended to investigate the fundamental properties of concrete which AE water reducing agent for reduction of bleeding is used, and the properties of bleeding reduction. According to the results, when the adding ratio of AE water reducing agent for reduction of bleeding increases, a range of normal fluidity and aimed air content are satisfied, setting time is faster than that of normal AE water reducing agent. And bleeding amount decreases, bleeding speed is highest between 60 and 90 min, and sinking depth increases drastically in 60 min. When. AE water reducing agent for reduction of bleeding is added, compressive strength shows a slight variation by air content, but there is not a large influence by addition of AE water reducing agent for reduction of bleeding. Synthetically, it proves that AE water reducing agent for reduction of bleeding satisfies aimed air content in the range of normal slump and can reduce only bleeding without quality variation of compressive strength.

  • PDF

Engineering Properties of Bleeding Reduction of Concrete Using AE Water Reducing Agent for the Type of Bleeding Reduction (블리딩저감형 AE감수제를 사용한 콘크리트의 공학적 특성)

  • Han, Cheon-Goo;Hwang, Yin-Seong;Lee, Seung-Hoon;Kim, Gyu-Dong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.133-140
    • /
    • 2004
  • This study is intended to investigate the properties of bleeding reduction of concrete using AE water reducing agent for the type of bleeding reduction with the replacement admixture. According to the results, when the adding ratio of AE water reducing agent for the type of bleeding reduction increases, a range of normal fluidity and aimed air content are satisfied, setting time is faster than that of normal AE water reducing agent. And bleeding amount decreases, bleeding speed is highest between 60 and 90 min, and sinking depth increases drastically in 50 min. When AE oater reducing agent for the type of bleeding reduction is added, compressive strength shows a slight variation by air content, but there is not a large influence by addition of AE water reducing agent for the type of bleeding reduction. Synthetically, it proves that AE water reducing agent for the type of bleeding reduction satisfies aimed air content in the range of normal slump and can reduce only bleeding without quality variation of compressive strength.

Effects of Animal Additives on the Fundamental Properties of Mortar and Concrete (동물성 첨가제가 모르타르 및 콘크리트의 기초 물성에 미치는 영향)

  • Song, Jin-Woo;Moon, Seung-Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.69-75
    • /
    • 2012
  • The study was conducted to determine the effects of adding pig blood as an admixture to both mortar and concrete. The mortar tests included the determination of its unit weight, flow and its compressive strength. Moreover, the concrete test includes the determination of air content, slump, bleeding, setting time compressive strength and freeze-thaw resistance of the material. As the test result, the utilization of pig blood, as an additive to both mortar and concrete mixtures causes air entrainment. The mortar flow increased and both the unit weight and the compressive strength of mortar decreased. As the blood replacement rate increases, the air content decreases over time, the setting and amount of bleeding showed a tendency to decline and reduced compressive strength, and the freeze-thaw resistance of the concrete increased.

  • PDF

Bleed Test for Mortar using Pressure Filter (가압 거름방법에 의한 모르타르의 블리딩 측정 방법)

  • Shin, Kyung-Joon;Choi, Seul-Woo;Choi, Sung;Lee, Kwang-Myong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.809-812
    • /
    • 2008
  • Bleed test methods currently being specified in KS, ASTM and BS are the methods to read the height of bleed water and volume changes of mortar poured into transparent cylinder. Time for measuring of bleed are specified as 3, 20 hours in KS specification, while bleed is measured at 3 hour and change of volume is measured at 24 hour in ASTM and BS specification. Like these, bleed test takes a lot of time to conduct. Another method to measure the bleed is the pressure filter test. This method predict the bleed by measuring the passed water through the fiber glass filter under pressure. This pressure filter test developed by Schupack in 1971 has an advantage in predicting the bleed in shorter time. However, data correlating the pressure filter test results with amount of bleed are limited. Therefore, this study aims at verifying the availability of pressure filter test as a method to predict the bleed and deriving the relation between this test results and bleed.

  • PDF