• Title/Summary/Keyword: 블록 하중

Search Result 142, Processing Time 0.025 seconds

The Model Test on Load Reduction Effect of Caps Foundation Method (캡스기초공법의 하중경감효과에 관한 모형시험)

  • Park, Jong-Man;Kang, Chi-Gwang;Kwak, Jung-Min;Han, Sang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.479-486
    • /
    • 2019
  • The caps foundation method can reduce the load of a building by using the arching effect, but verification of the method is still insufficient. In this paper, a model test was performed to quantitatively prove the load reduction effect by this method. The test was carried out using six conditions according to the size of caps foundation block and the area of the loading plate. The test results show that the earth pressure was the highest at the position closest to the loading point regardless of the size of caps foundation block and the area of the loading plate. At the highest earth pressure position, when the loading plate area was 30 cm × 30 cm, the earth pressure of a small block was reduced by 35.4% on average, and that of a big block was reduced by 39.7% compared to the pressure with no block. When the loading plate area was 60 cm × 60 cm, the earth pressure of the small block was reduced by 33.9% on average, and the earth pressure of the big block was reduced by 42.7%. Therefore, if the caps foundation method is applied, the load will be reduced by more than 33% for a small block and 39% for a big block.

Load & Resistance Factors Calibration for Front Covered Caisson Breakwater (소파블록 피복제 제체의 한계상태설계를 위한 하중저항계수 보정)

  • Kim, Dong Hyawn;Huh, Jungwon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.293-297
    • /
    • 2021
  • Calibration of load-resistance factors for the limit state design of front covered caisson breakwaters were presented. Reliability analysis of the breakwaters which are constructed in Korean coast was conducted. Then, partial safety factors and load-resistance factors were sequentially calculated according to target reliability index. Load resistance factors were optimized to give one set of factor for limit state design of breakwater. The breakwaters were redesigned by using the optimal load resistance factor and verified whether reliability indices larger than the target value. Finally, load-resistance factors were compared with foreign country's code for verification.

Modeling of Displacement of Linear Roller Bearing Subjected to External Forces Considering LM Block Deformation (외부하중을 받는 선형 롤러베어링의 LM 블록 변형을 고려한 변위 모델링)

  • Kwon, Sun-Woong;Tong, Van-Canh;Hong, Seong-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1077-1085
    • /
    • 2016
  • Linear roller bearing (LRB) is an important mechanical element that is widely used in precise positioning systems that are subjected to large loads. This paper presents a new model for estimating the displacement of an LRB subjected to external forces. For this purpose, assuming that the linear motion block (LM block) is rigid, the equilibrium conditions for the LRB were obtained by solving the equilibrium equations of the rollers and the rigid LM block using the iterative Newton-Raphson method. The contact loads between the rollers and raceways were determined considering the profiled rollers. Then, the structural deformations of the LM block, subjected to the contact loads from the rigid LM block model, were computed using a finite element model for the LM block. The displacements of the LRB were then determined by superposition of the rigid LM block displacements on the induced displacements due to the structural deformations of the LM block. The proposed method was verified through comparison with a program by the bearing manufacturer.

An Estimation of Shear Capacity of Hexagonal Masonry Walls Under Cyclic Loading (반복하중을 받는 육각형 블록 벽체 전단내력평가)

  • Chang, Gug-Kwan;Seo, Dae-Won;Han, Tae-Kyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.205-214
    • /
    • 2010
  • Masonry structures have been used throughout the world for the construction of residential buildings. However, from a structural point of view, the masonry material is characterized by a very low tensile strength. Moreover, the bearing and shear capacity of masonry walls have been found to be vulnerable to earthquakes. In this study, to improve the seismic performance of masonry walls, hexagonal blocks were developed and six masonry walls made with hexagonal block were tested to failure under reversed cyclic lateral loading. This paper focuses on an experimental investigation of different types of wall with hexagonal blocks, i.e. walls with different hexagonal blocks and with different reinforcing bar arrangements, subjected to applied cyclic loads. The cracking, damage patterns and hysteretic feature were evaluated. Results from the hexagonal masonry wall were shown more damage reduction and less brittle failure in comparison to the existing rectangular masonry walls.

Behavior Characteristics of Railway Roadbed Retained by Geosynthetic Reinforced Segmental Wall Under Train Load (열차 하중 작용 시 블록식 보강토 옹벽으로 지지된 철도 노반의 거동)

  • Lee, Seong Hyeok;Choi, Chan Yong;Lee, Jin Wook
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.467-475
    • /
    • 2012
  • Static and dynamic train load tests were conducted to evaluate the train load transfer mechanism in the roadbed which was retained by two types (fully and partially) of segmental retaining walls reinforced by geogrid. The test roadbed was 2.6m high, 5m wide, and 6m long. A combination of earth pressure gages, displacement transducers, and strain gages were placed in specific locations to measure the responses. Test results showed that the wall displacement pattern as well as the earth pressure for the fully reinforced retaining wall was different from those for the partially reinforced retaining wall. In the dynamic train load test, the strain in the upper part of the wall tended to decrease, and both the residual deformation and the rate of the deformation were significantly lower than those in the current design standard.

A Study on the Structure Behavior of Dry-assembled Wall with Concrete Blocks subjected to Cyclic Lateral Load (콘크리트블록으로 건식조립된 벽체의 수평반복하중에 대한 구조거동 연구)

  • Lee, Joong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.440-447
    • /
    • 2020
  • Masonry structures are used as bearing walls in small buildings, but they are generally considered non-bearing walls. They are used as partition walls that divide the interior spaces of the frame structures of buildings. In addition, wetting techniques that use mortar as an adhesive between blocks or bricks in construction are vulnerable to climatic conditions, especially cracks in mortar, which can cause conduction collapse of the walls in seismic loading. The purpose of this research was to propose a dry concrete block construction method that complements the weak axial shear stiffness and improves the weakness of the wet construction method as well as to investigate its structural behavior. In this study, the material properties of concrete blocks were examined, and the seismic performance of the proposed dry assembly structure was verified by structural behavior tests on horizontal cyclic loads. First, in these study results, concrete blocks can be applied to the dry block construction method instead of wet construction methods because they secure more than C-type blocks in KS regulations. Second, the structural performance of the wall against a horizontal cyclic load indicates that the resisting force of the assembly block wall is increased by increasing the horizontal length of the wall, forming several diagonal cracks. Finally, the proposed dry block wall structure requires a seismic performance assessment considering that the ratio of the shape of the wall by height and length is considered a major influence variable on the structural behavior under a horizontal load.

크랭크축-실린더블록 계의 진동해석

  • 오성환
    • Journal of the KSME
    • /
    • v.25 no.5
    • /
    • pp.406-412
    • /
    • 1985
  • 연소 동안에 크랭크 축은 오일 필름을 통하여 연소압력이 실린더 블록으로 전달된다. 점화 전에 관성력에 의한 크랭크 축의 굽힘 변형은 크랭크 축으로부터 메인 베어링까지의 연소하중 전달에 큰 영향을 미친다. 메인 베어링에 베어링 보를 부착시키거나 크랭크 축의 굽힘 강성을 변화시켜 실린더 블록의 스커어트 진동을 감소시키는 효과를 얻었다. 크랭크 축의 비틂 진 동을 일으키는 회전력과 관성력 변동의 합력은 크랭크 저어널의 횡진동을 일으킨다. 크랭크 축의 횡 강제진동은 베어링 1에서 최대값이기 때문에 실린더 블록의 굽힘, 비듦 진동에 대하여 기진력이 된다. 실린더 블록의 진동 진폭은 관성력 변동의 주파수가 실린더 블록의 공진진 동수에 가까워지는 정도와 크랭크 축 비듦 진동의 진폭에 의존한다. 크랭크 풀리의 극관성 모우멘트와 크랭크 축 비듦 진동을 감소시키는데 효과를 준다.

  • PDF

Shear Behavior Characteristics of Interface between Two Concrete-blocks (콘크리트 블록 접촉면의 전단특성)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.69-75
    • /
    • 2008
  • Shear tests were carried out on interface between two concrete eco-blocks which comprise segmental retaining wall. Three interface conditions were considered : 1) direct contact of two blocks, 2) placing rubber pad between two blocks, 3) placing rubber pad and shear key between two blocks. According to shear tests, shear load-shear displacement relationship which was obtained from direct contact of two blocks was similar to elastic-perfectly plastic behavior. Ductile behavior of shear load-shear displacement relationship was observed for the interface condition of placing rubber pad. Apparent minimum shear capacities and apparent friction angles for the interface conditions of direct contact of two blocks, placing rubber pad between two blocks, placing rubber pad and shear key were 1.7 kN/m, $27.6^{\circ}$ and 4.2 kN/m, $26.2^{\circ}$ and 20.9 kN/m, $26.0^{\circ}$ respectively.

Dynamic Frictional Behavior of Saw-cut Rock Joints Through Shaking Table Test (진동대 시험에 의한 편평한 암석 절리면의 동적 마찰거동 특성)

  • Park Byung-Ki;Jeon Seokwon
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.58-72
    • /
    • 2006
  • In recent years, not only the occurrences but the magnitude of earthquakes in Korea are on an increasing trend and other sources of dynamic events including large-scale construction, operation of hi띤-speed railway and explosives blasting have been increasing. Besides, the probability of exposure fir rock joints to free faces gets higher as the scale of rock mass structures becomes larger. For that reason, the frictional behavior of rock joints under dynamic conditions needs to be investigated. In this study, a shaking table test system was set up and a series of dynamic test was carried out to examine the dynamic frictional behavior of rock joints. In addition, a computer program was developed, which calculated the acceleration and deformation of the sliding block theoretically based on Newmark sliding block procedure. The static friction angle was back-calculated by measuring yield acceleration at the onset of slide. The dynamic friction angle was estimated by closely approximating the experimental results to the program-simulated responses. As a result of dynamic testing, the static friction angle at the onset of slide as well as the dynamic friction angle during sliding were estimated to be significantly lower than tilt angle. The difference between the tilt angle and the static friction angle was $4.5\~8.2^{\circ}$ and the difference between the tilt angle and the dynamic friction angle was $2.0\~7.5^{\circ}$. The decreasing trend was influenced by the magnitude of the base acceleration and inclination angle. A DEM program was used to simulate the shaking table test and the result well simulated the experimental behavior. Friction angles obtained by shaking table test were significantly lower than basic friction angle by direct shear test.

Behavior of Segmented Composites Using General Mortar under Static and Impact Loading (일반 모르타르를 이용한 분절 복합체의 정하중 및 충격하중 실험)

  • Kim, Youl-Hee;Min, Kyung-Hwan;Lee, Jae-Seong;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.33-36
    • /
    • 2008
  • It is generally known that a shell in the form of layered structures stacked up thin elements by organic adhesives has high resistance capacity against static and impact loading. The complex materials such as these diversified layered structures are more reliable and efficient to the impact loading than the single material. In this study, the segmented composites in the shape of a beam were made, using mortar and concrete block and tested under static and impact loading in order to develop the complex materials in the form of layered structures as the segmented composites to resist impact loading. And it compared to the normal concrete beams having the same compressive strength to evaluate the differences in their performance and failure modes.

  • PDF