• Title/Summary/Keyword: 블록기반 영상분할

Search Result 122, Processing Time 0.036 seconds

Block-based Color Image Segmentation Using Cylindrical Metric (Cylindrical metric을 사용한 블록기반 컬러 영상 분할)

  • Nam Hyeyoung;Kim Boram;Kim Wookhyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.7-14
    • /
    • 2005
  • In this paper we proposed the block-based color image segmentation method using the cylindrical metric to solve the problems such as long processing time and over segmentation due to noise and texture properties in the conventional methods. In the proposed method we define the new similarity function and the merge condition between regions to merge initial regions with the same size considering the color and texture properties of chromatic and achromatic regions which is defined according to the HSI color values, and we continue to merge boundary blocks into the adjacent region already segmented to maintain edges until the size of block is one. In the simulation results the proposed method is better than the conventional methods in the evaluation of the segmented regions of texture and edge region, and we found that the processing time is decreased by factor of two in the proposed method.

Natural Image Segmentation Considering The Cyclic Property Of Hue Component (색상의 주기성을 고려한 자연영상 분할방법)

  • Nam, Hye-Young;Kim, Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.16-25
    • /
    • 2009
  • In this paper we propose the block based image segmentation method using the cyclic properties of hue components in HSI color model. In proposed method we use center point instead of hue mean values as the hue representatives for regions in image segmentation considering hue cyclic properties and we also use directed distance for the hue difference among regions. Furthermore we devise the simple and effective method to get critical values through control parameter to reduce the complexity in the calculation of those in the conventional method. From the experimental results we found that the segmented regions in the proposed method is more natural than those in the conventional method especially in texture and red tone regions. In the simulation results the proposed method is better than the conventional methods in the in the evaluation of the human segmentation dataset presented Berkely Segmentation Database.

Adaptive Quad Block-based Disparity Estimation Algorithm Using Adjacent Predictors (인접 블록 상관도를 이용한 적응형 4분할 블록기반 고속 새차예측 기법)

  • 송혁;배진우;최병호;유지상
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.294-297
    • /
    • 2003
  • 최근 3차원 영상의 압축 방법에 대한 연구가 여러 분야에서 활발히 이루어지고 있으며, 특히 MPEG에서는 이와 관련하여 Exploration Experiment를 통하여 효율적인 기법을 연구하고 있다. 본 논문에서는 EE3를 위하여 스테레오 비디오 압축을 위한 효율적인 블록기반 시차예측 기법을 제안한다. 제안된 알고리즘은 스테레오 영상의 특성 중 주변 블록의 시차 벡터가 유사하다는 점을 이용하여 주변의 시차벡터를 예측 파라미터로 사용함으로써 계산량을 감소시킬 수 있었다. 또한, 예측 오차가 큰 객체의 경계면에서 블록의 크기를 4분할로 분할하여 시차 벡터를 재검색 하는 기법으로 경계 블록에 대한 예측 오차를 감소시킬 수 있었다. 모의 실험 결과 기존의 블록정합기법(BMA)에 비해 최대 75%의 계산량이 감소하였으며, PSNR 측면에서도 0.3dB이상 개선되었다.

  • PDF

Block-based Color Image Segmentation Using Y/C Bit-Plane Sum]nation Image (Y/C 비트 평면합 영상을 이용한 블록 기반 칼라 영상 분할)

  • Kwak, No-Yoon
    • Journal of Digital Contents Society
    • /
    • v.1 no.1
    • /
    • pp.53-64
    • /
    • 2000
  • This paper is related to color image segmentation scheme which makes it possible to achieve the excellent segmented results by block-based segmentation using Y/C bit-plane summation image. First, normalized chrominance summation image is obtained by normalizing the image which is summed up the absolutes of color-differential values between R, G, B images. Secondly, upper 2 bits of the luminance image and upper 6bits of and the normalized chrominance summation image are bitwise operated by the pixel to generate the Y/C bit-plane summation image. Next, the Y/C bit-plane summation image divided into predetermined block size, is classified into monotone blocks, texture blocks and edge blocks, and then each classified block is merged to the regions including one more blocks in the individual block type, and each region is selectively allocated to unique marker according to predetermined marker allocation rules. Finally, fine segmented results are obtained by applying the watershed algorithm to each pixel in the unmarked blocks. As shown in computer simulation, the main advantage of the proposed method is that it suppresses the over-segmentation in the texture regions and reduces computational load. Furthermore, it is able to apply global parameters to various images with different pixel distribution properties because they are nonsensitive for pixel distribution. Especially, the proposed method offers reasonable segmentation results in edge areas with lower contrast owing to the regional characteristics of the color components reflected in the Y/C bit-plane summation image.

  • PDF

Luma Noise Reduction using Deep Learning Network in Video Codec (Deep Learning Network를 이용한 Video Codec에서 휘도성분 노이즈 제거)

  • Kim, Yang-Woo;Lee, Yung-Lyul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.272-273
    • /
    • 2019
  • VVC(Versatile Video Coding)는 YUV 입력 영상에 대하여 Luma 성분과 Chroma 성분에 대하여 각각 다른 최적의 방법으로 블록분할 후 해당 블록에 대해서 화면 내 예측 또는 화면 간 예측을 수행하고, 예측영상과 원본영상의 차이를 변환, 양자화하여 압축한다. 이 과정에서 복원영상에는 블록화 노이즈, 링잉 노이즈, 블러링 노이즈 발생한다. 본 논문에서는 인코더에서 원본영상과 복원영상의 잔차신호에 대한 MAE(Mean Absolute Error)를 추가정보로 전송하여 이 추가정보와 복원영상을 이용하여 Deep Learning 기반의 신경망 네트워크로 영상의 품질을 높이는 방법을 제안한다. 복원영상의 노이즈를 감소시키기 위하여 영상을 $32{\times}32$블록의 임의로 분할하고, DenseNet기반의 UNet 구조로 네트워크를 구성하였다.

  • PDF

Feature Points Selection Using Block-Based Watershed Segmentation and Polygon Approximation (블록기반 워터쉐드 영역분할과 다각형 근사화를 이용한 특징점 추출)

  • 김영덕;백중환
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.93-96
    • /
    • 2000
  • In this paper, we suggest a feature points selection method using block-based watershed segmentation and polygon approximation for preprocessing of MPEG-4 mesh generation. 2D natural image is segmented by 8$\times$8 or 4$\times$4 block classification method and watershed algorithm. As this result, pixels on the watershed lines represent scene's interior feature and this lines are shapes of closed contour. Continuous pixels on the watershed lines are selected out feature points using Polygon approximation and post processing.

  • PDF

CNN-based In-loop Filtering Using Block Information (블록정보를 이용한 CNN기반 인 루프 필터)

  • Kim, Yangwoo;Lee, Yung-lyul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.27-29
    • /
    • 2019
  • VVC(Versatile Video Coding)는 입력 YUV영상을 CTU(Coding Tree Unit)으로 분할하고, 다시 이를 QTBTTT(Quad Tree, Binary Tree, Ternery Tree)로 최적의 블록으로 분할하고 각각의 블록을 공간적, 시간적 정보를 이용하여 예측하고 예측블록과 원본블록의 차분신호를 변환, 양자화를 통해 전송한다. 이를 위해 여러가지 인코딩정보가 디코더에 전송되며 이를 이용하여 디코더는 인코더와 똑같은 순서로 영상을 복원 할 수 있다. 본 논문에서는 이러한 VVC 인코더에서 반드시 전송하는 정보를 추가적으로 이용하여 딥러닝 기반의 Convolutional Neural Netwrok로 영상의 압축률 및 화질개선 하는 방법을 제안한다.

  • PDF

Unsupervised Texture Image Segmentation with Textural Orientation Feature (텍스쳐 방향특징에 의한 비교사 텍스쳐 영상 분할)

  • 이우범;김욱현
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.325-328
    • /
    • 2000
  • 텍스쳐 분석은 장면 분할, 물체 인식, 모양과 깊이 인식 등의 많은 영상 처리 분야에서 중요한 기술 중의 하나이다. 그러나 실영상에 포함된 다양한 텍스쳐 성분에 대해서 보편적으로 적용 가능한 효율적인 방법들에 대한 연구는 미흡한 실정이다. 본 논문에서는 텍스쳐 인식을 위해서 비교사 학습 방법에 기반 한 효율적인 텍스쳐 분석 기법을 제안한다. 제안된 방법은 텍스쳐 영상이 지닌 방향특징 정보로서 각(angle)과 강도(power)를 추출하여 자기 조직화 신경회로망에 의해서 블록기반으로 군집화(clustering)된다. 비교사적 군집 결과는 통합(merging)과 불림(dilation) 과정을 통해서 영상에 내재된 텍스쳐 성분의 분할을 수행한다. 제안된 시스템의 성능 평가를 위해서는 다양한 형태의 다중 텍스쳐 영상을 생성하여 적용한 후 그 유효성을 보인다.

  • PDF

A Still Image Compression System with a High Quality Text Compression Capability (고 품질 텍스트 압축 기능을 지원하는 정지영상 압축 시스템)

  • Lee, Je-Myung;Lee, Ho-Suk
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.3
    • /
    • pp.275-302
    • /
    • 2007
  • We propose a novel still image compression system which supports a high quality text compression function. The system segments the text from the image and compresses the text with a high quality. The system shows 48:1 high compression ratio using context-based adaptive binary arithmetic coding. The arithmetic coding performs the high compression by the codeblocks in the bitplane. The input of the system consists of a segmentation mode and a ROI(Region Of Interest) mode. In segmentation mode, the input image is segmented into a foreground consisting of text and a background consisting of the remaining region. In ROI mode, the input image is represented by the region of interest window. The high quality text compression function with a high compression ratio shows that the proposed system can be comparable with the JPEG2000 products. This system also uses gray coding to improve the compression ratio.

Image Segmentation Using Block Classification and Watershed Algorithm (블록분류와 워터쉐드를 이용한 영상분할 알고리듬)

  • Lim, Jae-Hyuck;Park, Dong-Kwon;Won, Chee-Sun
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.81-92
    • /
    • 1999
  • In this paper, we propose a new image segmentation algorithm which can be use din object-based image coding applications such as MPGA-4. Since the conventional objet segmentation methods based on mathematical morphology tend to yield oversegmented results, they normally need a postprocess which merges small regions to obtain a larger one. To solve this oversegmentation problem, in this paper, we prosed a block-based segmentation algorithm that can identify large texture regions in the image. Also, by applying the watershed algorithm to the image blocks between the homogeneous regions, we can obtain the exact pixel-based contour. Experimental results show that the proposed algorithm yields larger segments, particularly in the textural area, and reduces the computational complexities.

  • PDF