• Title/Summary/Keyword: 브레이징

Search Result 249, Processing Time 0.027 seconds

Brazing Filler Metal and Process for Stainless Steel (스테인리스강용 브레이징 합금과 브레이징 공정)

  • Hong, Sung Chul;Park, Sang Yoon;Jung, Do Hyun;Oh, Joo Hee;Lee, Jae Hoon;Kim, Wonjoong;Jung, Jae Pil
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.15-20
    • /
    • 2012
  • Brazing technology has been widely used among bonding technologies because it enables to bond various metals, even ceramics, dissimilar metals, and give higher bonding strength, cost down, automation, etc. However, there are many parameters to achieve optimal brazing joint such as brazing alloys, brazing atmospheres, designs and brazing methods, etc. The brazing parameters affect seriously on the characteristic of final brazing products. Stainless steel is broadly used in high temperature applications, chemical industry, heat exchangers, muffler of vehicles, and so on. Accordingly, in this article, brazing alloys, forms of brazing alloys, brazing methods and atmospheres for stainless steel were described.

A study about composition of $Al_2O_3/Al_2O_3$ brazing reaction layer and behavior of Ti using active filler metal (Ti가 함유된 Active Filler Metal을 이용한 $Al_2O_3/Al_2O_3$ Brazing 반응층의 조성과 Ti 거동에 관한 연구)

  • Son, Won-Geon;Chang, Sung-Chin;Kim, Eun-Sup;Moon, Hung-Sin;Kim, Kyung-Min;Park, Sung-Hyun;Shin, Byoung-Chu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.253-254
    • /
    • 2009
  • 본 연구는 다결정 알루미나 소결체와 사파이어웨이퍼(sapphire wafer)의 견고한 접합을 위해 활성금속 Ti가 함유된 Active Filler Metal을 사용하였고, 이를 브레이징한 후 접합 반응층과 Ti 거동 특성에 관한 것이다. 브레이징 (brazing)은 Ar 분위기 종에 $850^{\circ}C$에서 이행하였으며. 이때 다결정 알루미나, 사파이어와 Active Filler Metal 사이의 접합 반응층을 확인하였다. Active Filler Metal 내어| 존재하는 Ti가 접할 반응층의 양계면에 집중되는 것을 SEM을 이용하여 확인하였다. 또한 EDS Line Scanning을 실시하여 접합부에서 원소들의 분포를 관찰하였다.

  • PDF

A Study on the Zircaloy-4 Brazing with Beryllium Filler Metal for the Nuclear Fuel (베릴륨 용가재를 사용한 핵연료피복재 지르칼로이-4 브레이징에 대한 연구)

  • 고진현;김형수
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.70-78
    • /
    • 1993
  • An attempt was made to investigate the effect of brazing time on microstructure, microhardness, and corrosion of Zircaloy -4as well as the beryllium diffusion into its sheet. The sheets were coated with beryllium and brazed at $1020^{\circ}C$ for 20-40 minutes in $2{\times}10^{-5}$ torr vacuum atmosphere. 1. Microstructurally the brazed zone was largely divided into three regions: a region of continuous or partially formed of eutectic liquid films along grain boundaries; a region of precipitation in both grains and grain boundaries; a region of elongated wide structure of .alpha.-laths, which was not affected by beryllium. 2. Due to the precipitates, the beryllium-migrated region was hardened and the width of the hardened region increased with increasing brazing time. 3. Beryllium brazed Zircaloy -4 sheets showed a higher corrosion rate than those of as-received and heat-treated at a brazing temperature. 4. Diffusion coefficient of beryllium into Zircaloy -4 at $1020^{\circ}C$ for 30 minutes was $7.67{\times}10^{-7}cm^2/sec.$ It seemed that Be penetrated Zircaloy -4 by forming eutectic liquid films along grain boundaries in the proximity of Be/Zr interface and it, thereafter, diffused into Zircaloy mainly by interstitial solid solution.

  • PDF

High Temperature Flexural Strengths of the Ceramic-Metal Brazed Joints (세라믹-금속 브레이징 접합조인트의 고온 접합강도에 관한 연구)

  • Lee, Su-Jeong;Jeong, Myung-Yeong;Lee, Dai-Gil;Goo, Hyung-Hoi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.520-528
    • /
    • 1996
  • Four point bending tests of the brazed joint composed of sintered silicon nitride and 0.2% carbon steel with Cusil ABA filler which were fabricated at 86$0^{\circ}C$ were performed at temperatures, 25, 100, 200, 300, 400, 50$0^{\circ}C$ From the experiments, the maximum bending strength was measured at 30$0^{\circ}C$ From the 3D FE analysis of the residual stress of the brazed joint, it was revealed that the thermally induced residual stresses were minimized when the environmental temperature was 35$0^{\circ}C$ Considering the degradation of the filler material at high temperatures, it was calculated that the maximum bending strength of the brazed joint occured just below the temperature of the minimum thermal residual stress and the thermal residual stress was the dominative parameter of the brazed joint.

Cyclic Oxidation Behavior of Fe-Cr-Al Joint Brazed with Nickel-Base Filler Metal (Ni계 합금으로 브레이징된 Fe-Cr-Al 합금 접합부의 주기산화거동)

  • Mun, Byeong-Gi;Choe, Cheol-Jin;Park, Won-Uk
    • 연구논문집
    • /
    • s.29
    • /
    • pp.141-149
    • /
    • 1999
  • Brazing of Fe-Cr-Al alloy was carried out at $1200^{\circ}C$ in vacuum furnace using nickel-based filler metals : BNi-5 powder(Ni-Cr-Si-Fe base alloy} and MBF-50 foil (Ni-Cr-Si-B). The effect of boron content on the stability of oxide scale on the brazed joint was investigated by means of cyclic oxidation test performed at $1050^{\circ}C$ and $1200^{\circ}C$. Apparently, the joints brazed with MBF-50 containing boron showed relatively stable oxidation rates compared to boron-free BNi-5 at both temperatures. However, it was considered that the slower weight loss of MBF-50 brazed specimen wasn’t resulted from the low oxidation rate but from the spallation of oxide layer. The oxide layer consisted of thick spinel oxide on the surface and $Al_2 O_3$ internal oxide layer along the interface between mother alloy and braze, the mother alloy was also eroded seriously by the formation of spinel oxides such as $FeCr_2 O_4$ and $NiCr_2 O_4$ on the surface, likely to be induced by the change of oxide forming mechanism due to diffusion of boron from the braze. On the contrary, the joint brazed with BNi-5 showed the good oxidation resistance during the cyclic oxidation test. It seems that the oxidation can be retarded by the formation of stable $Al_2 O_3$ layer at the surface.

  • PDF

Efficient Layered Manufacturing Method of Metallic Sandwich Panel with Pyramidal Truss Structures using Infrared Brazing and its Mechanical Characteristics (피라미드 트러스형 금속 샌드위치 판재의 적외선 브레이징을 이용한 효율적 적층식 제작 및 특성에 관한 연구)

  • Lee, Se-Hee;Seong, Dae-Yong;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.76-83
    • /
    • 2010
  • Metallic sandwich panels with pyramidal truss structures are high-stiffness and high-strength materials with low weight. In particular, bulk structures have enough space for additional multi-functionalities. In this work, in order to fabricate 3-D structures efficiently, Layered Manufacturing Method (LMM) which was composed of three steps, including crimping process, stacking process and bonding process using rapid infrared brazing, was proposed. The joining time was drastically reduced by employing infrared brazing of which heating rate and cooling rate were faster than those of conventional furnace brazing. By controlling the initial cooling rate slowly, the bonding strength was improved up to the level of strength by conventional vacuum brazing. The observation of infrared brazed specimens by optical microscope and SEM showed no defect on the joining sections. The experiments of 1-layered pyramidal structures and 2-layered pyramidal structures subject to 3-point bending were conducted to determine structural advantages of multilayered structures. From the results, the multi-layered structure has superior mechanical properties to the single-layered structure.

Servo-actuate DC Projection Welding of Cylinder for Vacuum Airtightness (원통 실린더의 기밀을 위한 서보가압식 DC 프로젝션용접)

  • Jeong, Seon-Nyeo;Chang, Hee-Seok
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.48-48
    • /
    • 2010
  • 소형 공조장치용 냉매 압축기 부품인 기계식 제어 밸브는 에어컨 컴프레서의 핵심부품이고 년간 수백만 개가 국내에 수입된다. 이를 국산화 하기 위하여 진공로 속에서의 브레이징 공정이 수반되는 외국제품의 제조공정을 탈피하여 진공 속에서 DC 프로젝션 용접을 수행하는 기법을 개발하였다. 실린더 형상의 캡과 케이스를 맞대고 그 사이에 박판을 삽입한 상태에서 butt welding 방식으로 진행되는 본 공정에서는, 생산성이 높고 서보가압 장치를 사용하여 soft touch 를 구현하므로 프로젝션이 손상되지 않은 상태에서 통전이 시작되고 2 단 가압 및 프로파일 가압이 가능하므로 링(ring)형상의 너깃이 축대칭으로 안정적으로 형성되기 때문에 실린더 내부의 밀봉성능이 우수함을 확인하였다. 진공로 속에서 본 가압장치를 설치하여 간편한 방법으로 실린더 내부의 진공상태를 유지할 수 있기 때문에 진공로 속에서의 브레이징 공정이 적용되는 외국제품보다 생산성이 월등함을 알 수 있다. 본 연구에서 개발된 링 프로젝션(ring projection) 용접기법은 초소형 및 소형 실린더 형상의 부품 내부를 진공으로 유지해야 하는 산업현장에서 당장 적용될 수 있는 혁신적인 용접공정이라 판단된다.

  • PDF