• Title/Summary/Keyword: 붕괴위험도

Search Result 366, Processing Time 0.029 seconds

Design of Bridge Monitoring System Based on Sensor Network (센서 네트워크 기반 교량 원격 모니터링 시스템 설계)

  • Hwang, Du-Gwan;Kim, Seong-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.332-335
    • /
    • 2006
  • 최근 건설되고 있는 교량 대부분은 장대교라 명명할 정도로 그 길이가 매우 길게 되어 교량의 노후화, 차량의 증가 및 대형화로 인한 교량의 피로 축적, 예기치 않은 자연재해 등에 의해 붕괴 위험에 노출되어 있다. 따라서 이러한 위험을 사전에 예측하기 위해서는 효율적인 교량모니터링 시스템의 설계가 필수적으로 요구된다. 본 연구에서는 최근 각광을 받고 있는 유비쿼터스 센서 네트워크 기술을 이용한 효율적인 교량 모니터링 시스템을 제안하고 이의 유용성을 확인해 보고자 한다.

  • PDF

Flood Risk Analysis Considering the Sediment Transport in a River (하천에서의 유사이동의 영향을 고려한 홍수위험도 분석)

  • Son, In Ho;Kim, Byung Hyun;Han, Kun Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.302-302
    • /
    • 2015
  • 본 연구에서는 PMP 조건하에서 농업용 목적의 시례저수지의 가상붕괴에 따른 홍수파 해석을 통해서 하류부에 대한 수리학적 분석을 실시하였다. 그리고, 사력댐으로 구성된 댐 제체의 붕괴로 인한 유사 이송을 모의하고 이로 인한 하류부에서의 영향을 분석하였다. 이를 위하여 경상남도 김해에 위치한 시례저수지 유역을 대상으로 수리 수문자료 및 하천현황을 상세히 조사하고 댐의 가상 붕괴로 인한 하류부 홍수파 해석 및 댐 본체의 유실에 따른 유사의 이송으로 인해 발생 가능한 하류부에서의 영향을 분석하였다. 시례저수지의 댐 형식은 흙댐으로써, 구성방식은 침하량이 적은 중심코아형이며 댐 높이는 34.3 m, 유역면적은 3.13 km이다. 본 연구에서는 하천에서의 흐름과 유사이송 계산이 가능한 1차원 수치 모형인 CCHE1D를 이용하였다. 적용 모형은 확산파 및 동역학적 방정식을 모두 고려한다. 또한, 비평형 이송 모형을 사용하여 유사의 발생과 퇴적을 산정하고 비균질 상태의 유사 이송을 계산 하는데 있어서 하천 단면형의 변화와 하상물질의 구성 상태, 제방침식, 수로 확폭의 과정과 함께 산정된다. CCHE1D는 하상물질의 공극률과 non-equilibrium adaptation length, mixing layer thickness 등의 여러 변수들을 현재까지 개발된 식들을 제공하며, 토사이동해석을 위한 공식은 SEDTRA 모듈, Wu et al(2000) 공식, 수정 Ackers and White(1973) 공식, 수정 Engelund and Hansen(1967)이 사용된다. 비균질 유사이송과 bed deformation, bed-material sorting은 완전연계과정(coupling)로, 유사와 흐름방정식의 계산은 반연계과정(semi coupling)을 적용하여 계산하였다.

  • PDF

Development of Prediction Technique of Landslide Hazard Area in Korea National Parks (국립공원의 산사태 발생 위험지역 예측기법의 개발)

  • Ma, Ho-Seop;Jeong, Won-Ok;Park, Jin-Won
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.3
    • /
    • pp.326-331
    • /
    • 2008
  • This study was carried out to analyze the characteristics of each factors by using the quantification theory(I) for prediction of landslide hazard area. The results obtained from this study were summarized as follows; The stepwise regression analysis between landslide sediment ($m^3$ ) and environmental factors, factors affecting landslide sediment ($m^3$ ) were high in order of mixed (forest type), < 15 cm(soil depth), 801~1,200 m (altitude), $31{\sim}40^{\circ}$ (slope gradient), 46 cm < (soil depth), 1,201 m < (altitude) and s(aspect). According to the range, it was shown in order of soil depth (0.3784), altitude (0.2876), forest type (0.2409), slope gradient (0.1728) and aspect (0.1681). The prediction of landslide hazard area was estimated by score table of each category. The extent of prediction score was 0 to 1.2478, and middle score was 0.6239. Class I was over 1.1720, class II was 0.7543 to 0.1719, class III was 0.4989 to 0.7542 and class IV was below 0.4988.

Prediction of Slope Failure Using Control Chart Method (통계관리도 기법을 적용한 사면붕괴 예측)

  • Park, Sung-Yong;Chang, Dong-Su;Jung, Jae-Hoon;Kim, Young-Ju;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.2
    • /
    • pp.9-18
    • /
    • 2018
  • In this study, a field model experiment was performed to analyze the bahavior of slope during failure. It was analyzed through x-MR control chart method with inverse displacement and K-value. As a result, the portent was confirmed at 4 minutes before slope failure in Case 1. The change of the control limit line according to moving range was analyzed and it was effective to apply K = 3. Use of the inverse displacement and x-MR control chart method will be useful for the prediction of abnormal behavior through quick and objective judgment. Prediction of slope failure using control chart method can be used as basic data of slope measurement management standard, and it can contribute in reduction of life and property damage caused by slope disaster.

Recommendation of I-D Criterion for Steep-Slope Failure Estimation Considering Rainfall Infiltration Mechanism (강우침투 메커니즘을 이용한 급경사지 붕괴예측 I-D 기준식 제안)

  • Song, Young-Karb;Kim, Young-Uk;Kim, Dong-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.65-74
    • /
    • 2013
  • The natural disaster occurrences and the loss of lives caused by the steep-slope failures in Korea were investigated in this study. The investigation includes the frequency rate of the steep-slope failures with respect to the characteristics of precipitation, underlying bedrock, and weathered soils. Analysis on the problems in the existing estimation methods of steep-slope failure was also undertaken, and a new model using unsaturated infinite slope stability was developed for the better slope failure estimation. The slope analyses by the newly developed model were performed considering unsaturated infinite slope, the gradient of slope, and hydro/mechanical properties of soils. Steep-slope failure estimation criterion is proposed based on the analysis results. In addition, the precipitation amount corresponding to warning stages against steep-slope failure is provided as an equation of Intensity-Duration criterion.

Slope Behavior Analysis Using the Measurement of GFRP Underground Displacement (GFRP 록볼트 계측을 통한 사면 거동 분석)

  • Jin, Ji-Huan;Lim, Hyun-Taek;Bibek, Tamang;Chang, Suk-Hyun;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.11-19
    • /
    • 2018
  • Although many researches related to monitoring and automatic measuring devices for early warning system during slope failure have been carried out in Korea and aboard, most of the researches have installed measuring devices on the slope surface, and there are only few researches about warning systems that can detect and warn before slope failure and disaster occurs. In this study, slope failure simulation experiment was performed by attaching sensors to rock bolts, and initial slope behavior characteristics during slope failure were analyzed. Also, the experiment results were compared and reviewed with varied slope conditions, i.e. shotcrete slope and natural slope, and varied material conditions, i.e. GFRP and steel rock bolt. This study can be used as a basic data in development of warning and alarm system for early evacuation through early detection and warning before slope failure occurs in steep slopes and slope failure vulnerable areas.

Soil Volume Computation Technique at Slope Failure Using Photogrammetric Information (영상정보를 활용한 사면 붕괴 토사량 산정 기법)

  • Bibek, Tamang;Lim, Hyuntaek;Jin, Jihuan;Jang, Sukhyun;Kim, Yongseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.65-72
    • /
    • 2018
  • The uses of unmanned aerial vehicles (UAV) have been expanding in agriculture surveys, obtaining real time updates of dangerous facilities where human access is difficult, disaster monitoring, and 3D modeling. In reality, there is an upsurge in the application of UAVs in fields like, construction, infrastructure, imaging, surveying, surveillance and transportation. Especially, when the slope failure such as landslide occurs, the uses of UAVs are increasing. Since, the UAVs can fly in three dimensions, they are able to obtain spatial data in places where human access is nearly impossible. Despite of these advantages, however, the uses of UAVs are still limited during slope failure. In order to overcome these limitations, this study computes the soil volume change during slope failure through the computation technique using photogrammetric information obtained from UAV system. Through this study, it was found that photogrammetric information from UAV can be used to acquire information on amount of earthworks required for repair works when slope collapse occurs in mountainous areas, where human access in difficult.

Slope Failure Prediction through the Analysis of Surface Ground Deformation on Field Model Experiment (현장모형실험 기반 표층거동분석을 통한 사면붕괴 예측)

  • Park, Sung-Yong;Min, Yeon-Sik;Kang, Min-seo;Jung, Hee-Don;Sami, Ghazali-Flimban;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.1-10
    • /
    • 2017
  • Recently, one of the natural disasters, landslide is causing huge damage to people and properties. In order to minimize the damage caused by continuous landslide, a scientific management system is needed for technologies related to measurement and monitoring system. This study aims to establish a management system for landslide damage by prediction of slope failure. Ground behavior was predicted by surface ground deformation in case of slope failure, and the change in ground displacement was observed as slope surface. As a result, during the slope failure, the ground deformation has the collapse section, the after collapse precursor section, the acceleration section and the burst acceleration section. In all cases, increase in displacement with time was observed as a slope failure, and it is very important event of measurement and maintenance of risky slope. In the future, it can be used as basic data of slope management standard through continuous research. And it can contribute to reduction of landslide damage and activation of measurement industry.

A Study on Development Plan and Derivation of Improvement by Procedure for the Systematization in Steep Slope Management System (급경사지 관리의 체계화를 위한 절차별 개선사항 도출과 발전 방안 연구)

  • Lee, Jae Joon;Yun, Hong Sic;Kim, Yun Hee;Park, Sang Hyun
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.111-122
    • /
    • 2020
  • Purpose: In order to manage the steep slopes effectively, this study diagnose problems in the procedure of steep slopes management and propose Improved frame work is intended to mitigate human and property damage Method: Problems in the system are drawn through review of procedures for designation of collapse risk zones and fied investigation, interviews with local governments, and expert advice. Result: The selection stage, the subject of the management, the management method, and the factors that need to be improved by the management stage before the evaluation are derived. Conclusion: This paper identified the problems raised and drew improvements and presented the research direction for the development of the new system (plan) and the steep slope site.