Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2009.05a
/
pp.387-390
/
2009
패턴 분류 문제는 기계 학습 분야에서 매우 중요한 연구 주제이다. 하지만 불완전 데이터는 실생활에서 매우 빈번히 발생 할 뿐만 아니라 분류 모델의 학습도가 낮다는 문제점을 지니고 있다. 불완전한 데이터를 다루는 것에 대한 많은 방법들이 제안되어 왔지만 대부분의 방법들이 훈련 단계에 집중하고 있다. 본 논문에서는 삼각 형태의 퍼지 함수를 이용하여 불완전 데이터의 분류 알고리즘을 제안한다. 제안한 기법에서는 불완전한 특징 벡터에서의 불완전 데이터를 추론하고 학습하였으며, 추론된 데이터의 가중치를 삼각 퍼지 함수 분류기에 적용하였다. 실험을 통하여 제안한 기법이 상대적으로 높은 인식률을 나타냄을 확인할 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2008.11a
/
pp.44-47
/
2008
분류는 기계학습에서 매우 중요한 연구주제이다. 그 중에서도 수치형 데이터의 분류를 위한 많은 알고리즘들이 있다. 그러나 불완전한 데이터의 존재는 분류 모델들의 학습(learning) 품질(quality)을 떨어뜨린다. 그 불완전한 데이터는 현실 세계에서 아주 흔하다. 학습 단계와 분류 단계 양쪽에서 불완전한 데이터를 다루는 것이 중요하고 현실세계 문제들을 풀기 위해 적용되는 것이 필요하다. 본 논문에서 Optimal Completion Strategy(OCS)로부터 나온 몇 개의 공식들이 불완전한 데이터를 예측하기 위해 사용되었다. 새로운 방법이 불완전한 데이터를 분류하기 위해서 제시되었고, 그것은 놀라운 성능을 보여준다.
Recently, there has been growing interest in skyline queries. Most of works for skyline queries assume that the data do not have null value. However, when we input data through the Web or with other different tools, there exist incomplete data with null values. As a result, several skyline processing techniques for incomplete data have been proposed. However, available skyline query techniques for incomplete data do not consider the environments that coexist complete data and incomplete data since these techniques deal with the incomplete data only. In this paper, we propose a novel skyline group processing technique which evaluates skyline queries for the environments that coexist complete data and incomplete data. To do this, we introduce the top-k(g) skyline group query which searches g skyline groups with respect to the user's dimensional preference. In our experimental study, we show efficiency of our proposed technique.
Park, Eun-Ji;Byeon, Jeong-Woo;Choi, Da-Som;Kim, Jin-Han;Oh, Ryum-Duck
Proceedings of the Korean Society of Computer Information Conference
/
2014.01a
/
pp.125-126
/
2014
센서 스트림 데이터는 센서 네트워크를 통해 수집되는 데이터로 실시간 처리를 요구하며, 연속적으로 끊임없이 발생하는 스트림 데이터이다. 이러한 스트림 데이터는 양이 방대하여 이를 저장하기가 매우 어려우며, 동시에 데이터를 검색하는 데에는 많은 시간이 소요된다. 본 논문에서는 센서 네트워크에서의 효율적인 스트림 데이터 처리 시스템을 제안한다. 이 시스템은 캐시테이블을 사용함으로써 데이터베이스에 최소화된 접근으로 데이터 스트림 관리 시스템의 성능을 개선하였다. 그리고 센서 네트워크에서 읽어 들여온 불완전 데이터를 효율적으로 정제하고 상위 단계로 전송한다.
Proceedings of the Korean Information Science Society Conference
/
2000.10a
/
pp.302-304
/
2000
인터넷의 발달로 웹에는 엄청난 데이터가 존재하나, 불규칙적인 구조를 이루고 있는 반구조적 데이터가 대부분이다. 이러한 반구조적 데이터는 데이터들간의 어떤 정확하게 정해진 구조를 갖고 있진 않지만 불완전하고 불규칙한 구조 정보를 포함하고 있는 것으로, 데이터들 간의 관계를 규명할 수 있는 공통 구조 정보를 추출하여 효과적으로 구조화시킴으로써 정보로서의 가치를 높일 필요성이 대두되게 되었다. 또, 데이터 처리 과정에서 기존의 잘 정의된 구조를 가진 데이터베이스의 장점을 수용하기 위해서는 반구조적 데이터 집합의 불완전한 구조 정보로부터 공통 구조를 추출하는 것이 요구된다. 본 연구에서는 후보 항목 집합의 생성이 없는 빈발 패턴 탐사 기법을 사용하여 반구조적 데이터 집합으로부터 공통구조를 추출하고자 한다.
This paper introduces two different techniques for dealing with incomplete data and algorithms for learning this data. The first method is to process the incomplete data by assigning the missing value with equal probability that the missing variable can have, and learn this data with the SVM. This technique ensures that the higher the frequency of missing for any variable, the higher the entropy so that it is not selected in the decision tree. This method is characterized by ignoring all remaining information in the missing variable and assigning a new value. On the other hand, the new method is to calculate the entropy probability from the remaining information except the missing value and use it as an estimate of the missing variable. In other words, using a lot of information that is not lost from incomplete learning data to recover some missing information and learn using deep learning. These two methods measure performance by selecting one variable in turn from the training data and iteratively comparing the results of different measurements with varying proportions of data lost in the variable.
This paper introduces an algorithm that compensates for missing values after converting them into a format that can represent the probability for incomplete data including missing values in training data. In the previous method using this data conversion, incomplete data was processed by allocating missing values with an equal probability that missing variables can have. This method applied to many problems and obtained good results, but it was pointed out that there is a loss of information in that all information remaining in the missing variable is ignored and a new value is assigned. On the other hand, in the new proposed method, only complete information not including missing values is input into the well-known classification algorithm (C4.5), and the decision tree is constructed during learning. Then, the probability of the missing value is obtained from this decision tree and assigned as an estimated value of the missing variable. That is, some lost information is recovered using a lot of information that has not been lost from incomplete learning data.
The Journal of Korean Institute of Communications and Information Sciences
/
v.29
no.5C
/
pp.700-705
/
2004
Clustering of incomplete data using the Autoencoder and the Fuzzy c-Means(PCM) is proposed in this paper. The Proposed algorithm, called Optimal Completion Autoencoder Fuzzy c-Means(OCAEFCM), utilizes the Autoencoder Neural Network (AENN) and the Gradiant-based FCM (GBFCM) for optimal completion of missing data and clustering of the reconstructed data. The proposed OCAEFCM is applied to the IRIS data and a data set from a financial institution to evaluate the performance. When compared with the existing Optimal Completion Strategy FCM (OCSFCM), the OCAEFCM shows 18%-20% improvement of performance over OCSFCM.
Proceedings of the Korea Information Processing Society Conference
/
2009.04a
/
pp.282-285
/
2009
대부분의 스카이라인 질의에 대한 연구는 완전한 데이터에 관하여 이루어지고 있다. 하지만, 우리가 웹이나 기타 다른 도구로 데이터베이스에 자료를 입력할 때는 null을 허용하는 부분이 존재한다. 현재 이런 불완전한 데이터를 처리하기 위한 많은 연구가 이루어지고 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 기존에 제안되었던 불완전한 데이터를 처리하는 기법과 차원의 저주를 해결하기 위한 기법을 고려하여 이를 바탕으로 완전한 데이터와 동등하거나 혹은 더 좋을지도 모르는 데이터를 우선순위가 높은 순서대로 k(g)개 검색해주는 스카이라인 그룹 질의를 도입하고 이를 처리하는 방법을 제안한다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.652-654
/
2005
베이지안 네트워크의 파라메터 학습은 주어진 평가 척도에 따라 데이터의 훈련집합에 가장 잘 부합되는 네트워크 파라메터를 구하는 것으로, 베이지안 네트워크 설계에 드는 시간과 노력을 줄이기 위해 연구되어 왔다. 본 논문에서는 불완전한 데이터로부터 온라인으로 베이지안 네트워크의 파라메터를 학습하는 방법을 제안한다. 제안하는 방법은 불완전한 데이터로부터 학습이 가능하도록 하여 학습의 유연성을 높이고, 온라인 학습을 통해 사용자 또는 환경의 변화를 잘 모델링한다. Choen 등이 제안한 온라인 파라메터 학습 방법인 Voting EM 알고리즘과 비교 실험 결과, 제안하는 방법의 유용성을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.