• 제목/요약/키워드: 불연속성

Search Result 217, Processing Time 0.032 seconds

Research Trend Analysis for Fault Detection Methods Using Machine Learning (머신러닝을 사용한 단층 탐지 기술 연구 동향 분석)

  • Bae, Wooram;Ha, Wansoo
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.479-489
    • /
    • 2020
  • A fault is a geological structure that can be a migration path or a cap rock of hydrocarbon such as oil and gas, formed from source rock. The fault is one of the main targets of seismic exploration to find reservoirs in which hydrocarbon have accumulated. However, conventional fault detection methods using lateral discontinuity in seismic data such as semblance, coherence, variance, gradient magnitude and fault likelihood, have problem that professional interpreters have to invest lots of time and computational costs. Therefore, many researchers are conducting various studies to save computational costs and time for fault interpretation, and machine learning technologies attracted attention recently. Among various machine learning technologies, many researchers are conducting fault interpretation studies using the support vector machine, multi-layer perceptron, deep neural networks and convolutional neural networks algorithms. Especially, researchers use not only their own convolution networks but also proven networks in image processing to predict fault locations and fault information such as strike and dip. In this paper, by investigating and analyzing these studies, we found that the convolutional neural networks based on the U-Net from image processing is the most effective one for fault detection and interpretation. Further studies can expect better results from fault detection and interpretation using the convolutional neural networks along with transfer learning and data augmentation.

Combination of Token Bucket and AMP Schemes to Solve Buffer Underflow and Overflow of Video Streaming in Wireless Communication (무선통신 환경에서 비디오 스트리밍의 버퍼 언더플로우와 오버플로우를 해결하기 위한 토큰버킷과 AMP 기법의 결합)

  • Lee, Hyun-no;Kim, Dong-hoi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1330-1338
    • /
    • 2015
  • In wireless communication network, the amount of packet data for the video streaming in the playout buffer of the receiver is changed with time according to network condition. If the amount of packet data is less than a specific buffer amount, the buffer underflow problem is generated. On the contrary, if the amount of packet data is more than a given buffer amount, the buffer overflow problem is occurred. When the playout of the video streaming is processed, these buffer underflow and overflow problems cause stop and skip phenomenons and then provide the discontinuity of playout. Therefore, to solve the buffer underflow and overflow problems of the video streaming in wireless communication network, This paper analyzes the combined effect of Token Bucket scheme, which controls the bursty traffic, and AMP(Adaptive Media Playout) scheme, which adaptively changes the playout speed of receiver. Through simulation, we found that the combination of Token Bucket and AMP schemes provides the superiority in terms of the occurrence number of buffer underflow and overflow, the stop duration time and the number of removed frames generated by underflow and overflow, and PSNR.

Evaluation of Van Khan Tooril's castle, an archaeological site in Mongolia, by Ground Penetrating Radar (GPR을 이용한 몽고 유적지 반 칸 투리일의 성 (Van Khan Tooril's castle)의 평가)

  • Khuut, Tseedulam;Sato, Motoyuki
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.69-76
    • /
    • 2009
  • We report an implementation of the Ground Penetrating Radar (GPR) survey at a site that corresponds to a ruined castle. The objective of the survey was to characterise buried archaeological structures such as walls and tiles in Van Khan Tooril's Ruin, Mongolia, by 2D and 3D GPR techniques. GPR datasets were acquired in an area 10mby 9 m, with 10 cm line spacing. Two datasets were collected, using GPR with 500MHz and 800MHz frequency antennas. In this paper, we report the use of instantaneous parameters to detect archaeological targets such as tile, brick, and masonry by polarimetric GPR. Radar polarimetry is an advanced technology for extraction of target scattering characteristics. It gives us much more information about the size, shape, orientation, and surface condition of radar targets. We focused our interpretation on the strongest reflections. The image is enhanced by the use of instantaneous parameters. Judging by the shape and the width of the reflections, it is clear that moderate to high intensity response in instantaneous amplitude corresponds to brick and tiles. The instantaneous phase map gave information about the location of the targets, which appeared as discontinuities in the signal. In order to increase our ability to interpret these archaeological targets, we compared the GPR datasets acquired in two orthogonal survey directions. A good correlation is observed for the alignments of reflections when we compare the two datasets. However, more reflections appear in the north-south survey direction than in the west-east direction. This is due to the electric field orientation, which is in the horizontal plane for north-south survey directions and the horizontally polarised component of the backscattered high energy is recorded.

Applications of Regularized Dequantizers for Compressed Images (압축된 영상에서 정규화 된 역양자화기의 응용)

  • Lee, Gun-Ho;Sung, Ju-Seung;Song, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.5
    • /
    • pp.11-20
    • /
    • 2002
  • Based on regularization principles, we propose a new dequantization scheme on DCT-based transform coding for reducing of blocking artifacts and minimizing the quantization error. The conventional image dequantization is simply to multiply the received quantized DCT coefficients by the quantization matrix. Therefore, for each DCT coefficients, we premise that the quantization noise is as large as half quantizer step size (in DCT domain). Our approach is based on basic constraint that quantization error is bounded to ${\pm}$(quantizer spacing/2) and at least there are not high frequency components corresponding to discontinuities across block boundaries of the images. Through regularization, our proposed dequantization scheme, sharply reduces blocking artifacts in decoded images. Our proposed algorithm guarantees that the dequantization process will map the quantized DCT coefficients will be evaluated against the standard JPEG, MPEG-1 and H.263 (with Annex J deblocking filter) decoding process. The experimental results will show visual improvements as well as numerical improvements in terms of the peak-signal-to-noise ratio (PSNR) and the blockiness measure (BM) to be defined.

Gaussian Noise Reduction Algorithm using Self-similarity (자기 유사성을 이용한 가우시안 노이즈 제거 알고리즘)

  • Jeon, Yougn-Eun;Eom, Min-Young;Choe, Yoon-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.1-10
    • /
    • 2007
  • Most of natural images have a special property, what is called self-similarity, which is the basis of fractal image coding. Even though an image has local stationarity in several homogeneous regions, it is generally non-stationarysignal, especially in edge region. This is the main reason that poor results are induced in linear techniques. In order to overcome the difficulty we propose a non-linear technique using self-similarity in the image. In our work, an image is classified into stationary and non-stationary region with respect to sample variance. In case of stationary region, do-noising is performed as simply averaging of its neighborhoods. However, if the region is non-stationary region, stationalization is conducted as make a set of center pixels by similarity matching with respect to bMSE(block Mean Square Error). And then do-nosing is performed by Gaussian weighted averaging of center pixels of similar blocks, because the set of center pixels of similar blocks can be regarded as nearly stationary. The true image value is estimated by weighted average of the elements of the set. The experimental results show that our method has better performance and smaller variance than other methods as estimator.

Video Streaming Receiver with Token Bucket Automatic Parameter Setting Scheme by Video Information File needing Successful Acknowledge Character (성공적인 확인응답이 필요한 비디오 정보 파일에 의한 토큰버킷 자동 파라메타 설정 기법을 가진 비디오 스트리밍 수신기)

  • Lee, Hyun-no;Kim, Dong-hoi;Nam, Boo-hee;Park, Seung-young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.1976-1985
    • /
    • 2015
  • The amount of packets in palyout buffer of video streaming receiver can be changed by network condition, and saturated and exhausted by the delay and jitter. Especially, if the amount of incoming video traffic exceeds the maximum allowed playout buffer, buffer overflow problem can be generated. It makes the deterioration of video image and the discontinuity of playout by skip phenomenon. Also, if the incoming packets are delayed by network confusion, the stop phenomenon of video image is made by buffering due to buffer underflow problem. To solve these problems, this paper proposes the video streaming receiver with token bucket scheme which automatically establishes the important parameters like token generation rate r and bucket maximum capacity c adapting to the pattern of video packets. The simulation results using network simulator-2 (NS-2) and joint scalable video model (JSVM) show that the proposed token bucket scheme with automatic establishment parameter provides better performance than the existing token bucket scheme with manual establishment parameter in terms of the generation number of overflow and underflow, packer loss rate, and peak signal to noise ratio (PSNR) in three test video sequences.

Wavelet Series Analysis of Axial Members with Stress Singularities (응력특이를 갖는 축방향 부재의 웨이블렛 급수해석)

  • Woo, Kwang-Sung;Jang, Young-Min;Lee, Dong-Woo;Lee, Sang-Yun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The Fourier series uses a vibrating wave that possesses an amplitude that is like the one of the sine curve. Therefore, the functions used in the Fourier series do not change due to the value of the frequency and that set a limit to express irregular signals with rapid oscillations or with discontinuities in localized regions. However, the wavelet series analysis(WSA) method supplements these limits of the Fourier series by a linear combination of a suitable number of wavelets. By using the wavelet that is focused on time, it is able to give changes to the range in the cycle. Also, this enables to express a signal more efficiently that has singular configuration and that is flowing. The main objective of this study is to propose a scheme called wavelet series analysis for the application of wavelet theory to one-dimensional problems represented by the second-order elliptic equation and to evaluate theperformance of proposed scheme comparing with the finite element analysis. After a through evaluation of different types of wavelets, the HAT wavelet system is chosen as a wavelet function as well as a scaling function. It can be stated that the WSA method is as efficient as the FEA method in the case of axial bars with distributed loads, but the WSA method is more accurate than the FEA method at the singular points and its computation time is less.

EFFECTS OF ER:YAG LASER ABLATION ON THE DENTIN (Er:YAG 레이저를 이용한 치아삭제 효과)

  • Choi, Nam-Ki;Yang, Kyu-Ho;Park, Sang-Won;Kim, Ok-Joon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.4
    • /
    • pp.683-693
    • /
    • 2001
  • The purpose of this study was to evaluate the effects of Er:YAG laser on cutting efficacy and its histologic findings. Dentin specimens of human premolars and molars were used and irradiated by Er:YAG laser with noncontact handpiece type delivery system under different treatment condition of irradiation time. Cavity pattern and volume were evaluated to determine the cutting efficacy and following results were obtained. 1. Cutting volume of sound dentin was getting larger with time immersed in water increase 2. With the condition of irradiation (150mJ, 10Hz, 30sec), surface irregularity was more increased in sound dentin comparing to carious dentin. For the light microscopic examination, dentinal tubules were opened and ash flecks and cracks were noted with inconsistence of dentinal tubules. 3. In case of 30 sec. irradiation in carious dentin, dark zone was limited to small focus whereas 1 min. irradiation, more wider, and cracks were noted in the perpendicular to direction of dentinal tubules. For the 2 min. irradiation, cavity was the widest and more cracks were found.

  • PDF

Ray Effect Analysis Using the Discrete Elements Method in X-Y Geometry (2차원 직각좌표계에서 DEM을 이용한 ray effect의 해석)

  • Choi, Ho-Sin;Kim, Jong-Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.17 no.1
    • /
    • pp.43-56
    • /
    • 1992
  • As one of the methods to ameliorate the ray effects which are the nature of anomalous computational effects due to the discretization of the angular variable in discrete ordinates approximations, a computational program, named TWODET (TWO dimensional Discrete Element Transport), has developed in 2 dimensional cartesian coordinates system using the discrete elements method, in which the discrete angle quadratures are steered by the spatially dependent angular fluxes. The results of the TWODET calculation with K-2, L-3 discrete angular quadratures, in the problem of a centrally located, isotropically emitting flat source in an absorbing square, are shown to be more accurate than that of the DOT 4.3 calculation with S-10 full symmetry angular quadratures, in remedy of the ray effect at the edge flux distributions of the square. But the computing time of the TWODET is about 4 times more than that of the DOT 4.3. In the problem of vacuum boundaries just outside of the source region in an absorbing square, the results of the TWODET calculation are shown severely anomalous ray effects, due to the sudden discontinuity between the source and the vacuum, like as the results of the DOT 4.3 calculation. In the probelm of an external source in an absorbing square in which a highly absorbing medium is added, the results of the TWODET calculation with K-3, L-4 show a good ones like as, somewhat more than, that of the DOT 4.3 calculation with S-10.

  • PDF

A Methodology for 3-D Optimally-Interpolated Satellite Sea Surface Temperature Field and Limitation (인공위성 해수면온도 3-D 최적 내삽 합성장 생산 방법과 한계점)

  • Park, Kyung-Ae;Kim, Young-Ho
    • Journal of the Korean earth science society
    • /
    • v.30 no.2
    • /
    • pp.223-233
    • /
    • 2009
  • Three-dimensional (3-D) optimally-interpolated sea surface temperature (SST) field was produced by using AQUA/AMSR-E satellite data, and its limitations were described by comparing the temporal average of sea surface temperatures. The 3-D OI (Optimum Interpolation) SST showed a small error of less than $0.05^{\circ}C$ in the central North Pacific, but yielded large errors of greater than $0.4^{\circ}C$ at the coastal area where the satellite microwave data were not available. OI SST composite around pixels with no observation due to heavy rainfall or cloudy pixels had estimation errors of $0.1-0.15^{\circ}C$. Comparison with temporal means showed a tendency that overall OI SSTs were underestimated around heavy cloudy pixels and smoothed out by reducing the magnitude of SST fronts. In the low-latitude areas near the equator, OI SST field produced discontinuity, originated from the window size for the OI procedure. This was mainly caused by differences in the spatial scale of oceanic features. Infernal Rossby deformation radius, as a measure of spatial stale, showed dominant latitudinal variations with O(1) difference in the North Pacific. This study suggests that OI SST methodology should consider latitudinally-varying size of window and the characteristics of spatial scales of oceanic phenomena with substantial dependency on latitude and vertical structure of density.