• Title/Summary/Keyword: 불연속면의 분포특성

Search Result 70, Processing Time 0.03 seconds

Review of Applicability of Analysis Method based on Case Study on Rainfall-Induced Rock Slope Failure (강우에 의한 암반사면 파괴 해석 사례 연구를 통한 해석방법 적용성 검토)

  • Jung, Jahe;Kim, Wooseok
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.267-274
    • /
    • 2017
  • Behavior of rock mass depend on the mechanical properties of intact rock and geometrical property of discontinuity distributed in rock mass. In case of rock slope, particularly, location of slope failure surface and behavior after failure are changed due to discontinuities. In this study, two 3D slope stability analysis methods were developed for two different failure types which are circular failure and planar failure, considering that failure type of rock slope is dependent on scale of discontinuity which was then applied to real rock slope to review the applicability. In case of circular failure, stable condition was maintained in natural dry condition, which however became unstable when the moisture content of the surface was increased by rainfall. In case of planar failure, rock slope become more unstable comparing to dry condition which is attributable to decrease in friction angle of discontinuity surface due to rainfall. Viewing analysis result above, analysis method proved to have well incorporated the phenomenon occurred on real slope from the analysis result, demonstrating its applicability to reviewing the slope stability as well as to maintaining the slope.

Probabilistic Approach of Stability Analysis for Rock Wedge Failure (확률론적 해석방법을 이용한 쐐기파괴의 안정성 해석)

  • Park, Hyuck-Jin
    • Economic and Environmental Geology
    • /
    • v.33 no.4
    • /
    • pp.295-307
    • /
    • 2000
  • Probabilistic analysis is a powerful method to quantify variability and uncertainty common in engineering geology fields. In rock slope engineering, the uncertainty and variation may be in the form of scatter in orientations and geometries of discontinuities, and also test results. However, in the deterministic analysis, the factor of safety which is used to ensure stability of rock slopes, is based on the fixed representative values for each parameter without a consideration of the scattering in data. For comparison, in the probabilistic analysis, these discontinuity parameters are considered as random variables, and therefore, the reliability and probability theories are utilized to evaluate the possibility of slope failure. Therefore, in the probabilistic analysis, the factor of safety is considered as a random variable and replaced by the probability of failure to measure the level of slope stability. In this study, the stochastic properties of discontinuity parameters are evaluated and the stability of rock slope is analyzed based on the random properties of discontinuity parameters. Then, the results between the deterministic analysis and the probabilistic analysis are compared and the differences between the two analysis methods are explained.

  • PDF

A Study on the Stress Distribution of Pillar Basement during Two-arch Tunnel Excavation in Discontinuous Rock Mass (불연속성 암반에서 2-아치 터널 굴착시 필러 기초부 응력 분포에 대한 연구)

  • Kim, Hong-Moon;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.123-131
    • /
    • 2009
  • Large scale model tests and numerical analyses were performed in order to investigate the stress distribution on the base of pillar during two-arch tunnel excavation in the regularly jointed rocks. It was observed that the stress was irregularly distributed on pillar and the angle of discontinuities seriously influenced on the stress distribution on the pillar base in the discontinuous rock mass. In the numerical analyses results, It was shown that the stress level of pillar was greatly changed depending on the excavation sequences of two-arch tunnel. It was also observed that stress distributed eccentrically at the pillar as well as at the base of pillar. It is necessary to consider this point for the design of two-arch tunnel.

Probabilistic Analysis for Rock Slope Stability Due to Weathering Process (풍화작용에 따른 암반사면 안정성의 확률론적 해석)

  • Park, Hyuck-Jin;Woo, Ik;Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.357-366
    • /
    • 2009
  • Since weathering weakens the rock fabric and exaggerates any structural weakness, it affects mechanical properties as well as physical and chemical properties of rock. Weathering leads to a decrease in density, strength, friction angle and cohesion, and subsequently it affects negatively on the stability of rock slope. The purpose of the study is to investigate the changes of the rock slope stability caused by discontinuities which have different weathering grades. For that, the discontinuity samples which are divided into two different weathering grades are obtained from the field and tested their mechanical properties such as JCS, JRC and residual friction angle. In order to evaluate the effects on the stability of slope due to weathering, the deterministic analysis is carried out. That is, the factors of safety for planar failure are calculated for rock masses which have two different weathering grades, such as fresh and weathered rock mass. However, since the JRC and friction angle values are widely scattered and the deterministic analysis cannot consider the variation, the factors of safety cannot represent properly the stability of the rock slope. Therefore, the probabilistic analysis has been used to consider the scattered values. In the deterministic analysis, the factors of safety for the fresh discontinuity and weathered discontinuity are 1.25 and 1.0, respectively. The results indicate the fresh discontinuities are stable for planar failure and the weathered discontinuities are marginally stable. However, the probabilities of failure for the fresh discontinuity and weathered discontinuity are 25.6% and 45.9%, respectively. This shows that both discontinuities are analyzed as unstable in the probabilistic analysis.

Numerical Analysis of Deformation Behaviour of Underground Opening in a Discontinuous Rock Mass Using a Continuum Joint Model (연속체 절리모델을 이용한 불연속성암반 내 지하공동의 변형거동에 관한 수치해석)

  • Kang Sang Soo;Lee Jong-Kil;Baek Hwanjo
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.257-268
    • /
    • 2005
  • In situ rock mass is generally heterogeneous and discontinuous, with varying degrees of strength along the planes of weakness. The planes of weakness such as joints, faults, cracks and bedding planes, control the strength and deformation characteristics of the rock mass. Subsequently, the stability of underground opening depends upon the spatial distribution of discontinuities and their mechanical properties in relation with geometrical shape of openins as well as the mechanical properties of intact rock materials. Understanding the behaviour of a discontinuous rock mass remains a key issue for improving excavation design in hiかy stressed environments. Although recent advances in rock mechanics have provided guidelines for the design of underground opening in isotropic rock mass, prediction and control of deformation in discontinuous rock masses are still unclear. In this study, parametric study was performed to investigate the plastic zone size, stress distribution and deformation behavior around underground opening in a discontinuous rock mass using a continuum joint model. The solutions were obtained by an elasto-plastic finite difference analysis, employing the Mohr-Coulomb failure criteria. Non-associated flow rule and perfectly plastic material behavior are also assumed.

Field Investigation and Stability Analysis of a Volcanic Rock Slope at the Song-Gok site, Wan-Do (완도 송곡지구 화산암류 비탈면의 현장조사 및 안정성 검토 사례 연구)

  • Kim, Hong-Gyun;Ok, Young-Seok;Kim, Seung-Hyun;Koo, Ho-Bon
    • The Journal of Engineering Geology
    • /
    • v.23 no.2
    • /
    • pp.149-160
    • /
    • 2013
  • Volcanic activity commonly creates a highly complicated volcanic complex due to the admixture of lava flow and sedimentation of volcanic ash. The Song-Gok site is composed of volcanic rocks that collapsed at the lower part of the slope, in combination with several discontinuities in and around a fault. The results of projection analysis indicated the possibility of plane, wedge, and toppling failure in the failure section. The results of discontinuity modeling using the Distinct Element Method (DEM) revealed a total displacement of 207 mm and a joint shear displacement of 114 mm. The yield surface zone was verified at the fault plane of the failure section. In geotechnical terms, volcanic rock slopes are characteristically vulnerable to failure because of differential weathering among the various rock types, the effect of groundwater based on the permeability of the rocks, and the presence of systematic joints generated by the cooling and contraction of lava. When considering the stability of a volcanic rock slope, it is necessary to consider data such as the geological features of the rock, as obtained through detailed geological survey, and variations in discontinuities and rock blocks.

Characterization of Fracture Roughness in Coarse.medium.fine Grained Granite (암반 불연속면의 거칠기 특성 - 조.중.세립질 화강암을 중심으로 -)

  • 김종태;정교철;김만일;송재용;박창근
    • The Journal of Engineering Geology
    • /
    • v.14 no.2
    • /
    • pp.147-168
    • /
    • 2004
  • Purpose of this study is to quantitatively characterize the fracture roughness which was measured with a confocal laser scanning microscope. The roughness discrete data measured by confocal laser microscope were analyzed by spectral analysis and fast Fourier transform (FFT).The roughness data by used noise reduction filter were applied for fractal analysis to describe roughness features quantitatively. Artificial fractures created by Brazilian test on granites were used to measure fracture roughness under the confocal laser scanning microscope. Measurements were performed along three scan lines on each fracture surface. 36 scan lines were determined on 12 specimens in total. Features of roughness showed that coarse and medium grained granites tend to more rough features than those of fine grained granites. Continuous analog data of roughness is possible to described as discrete data of measure roughness with a fixed interval under the confocal laser microscope. Results of FFT with the measured data showed the highest values on the second harmonics. Distribution of average amplitude of second harmonics was observed 0.9853 in coarse grained granite, 1.0792 in medium grained granite and 0.6794 in fine grained granite. This indicates that the larger roughness has the higher energy of harmonics as the result of fractal analysis in low frequency zone.

Current distribution of a conducting body of revolution includig discontinuous surface (불연속면을 포함하고 있는 회전형 완전도체의 전류분포특성)

  • 김경언
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.29-33
    • /
    • 1990
  • Efficient numerical method is developed for treating electromagnetic problems of scattering and radiation from surfaces. Special consideration is given to the treatment of edges so that rather arbitrary geometrical configurations may be handled. For the conducting body problems considered, an electric field integral formulation is used, and the method of moments is applied using pulse expantions to present currents. Numerial results indicate that the approach is free os anomalies in the behavior of current for body of revoution.

  • PDF

Analysis of Random Properties for JRC using Terrestrial LiDAR (지상라이다를 이용한 암반사면 불연속면거칠기에 대한 확률특성 분석)

  • Park, Sung-Wook;Park, Hyuck-Jin
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • Joint roughness is one of the most important parameters in analysis of rock slope stability. Especially in probabilistic analysis, the random properties of joint roughness influence the probability of slope failure. Therefore, a large dataset on joint roughness is required for the probabilistic analysis but the traditional direct measurement of roughness in the field has some limitations. Terrestrial LiDAR has advantagess over traditional direct measurement in terms of cost and time. JRC (Joint Roughness Coefficient) was calculated from statistical parameters which are known from quantitative methods of converting the roughness of the material surface into JRC. The mean, standard deviation and distribution function of JRC were obtained, and we found that LiDAR is useful in obtaining large dataset for random variables.

A Study on Applicability of Pre-splitting Blasting Method According to Joint Frequency Characteristics in Rock Slope (암반사면의 절리빈도 특성에 따른 프리스플리팅 발파공법의 적용성 연구)

  • Kim, Shin;Lee, Seung-Joong;Choi, Sung-O.
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.1-16
    • /
    • 2010
  • This study focuses on the phenomenon that the blast damaged zone developed on rock slope surfaces can be affected by joint characteristics rather than by explosive power when the pre-splitting is applied to excavate a jointed rock slope. The characteristics of rock joints on a slope were investigated and categorized them into 4 cases. Also an image processing system has been used for comparing the distribution pattern of rock blocks. From this investigation, it was found that the rock blocks bigger than 2,000 mm occupied 42% in the case of single joint set and it showed the well efficiency of pre-splitting blast. In cases of 2~3 parallel joint sets and 2~3 intersecting joint sets are developed on rock surfaces, the rock blocks in the range of 1,000~2,000 mm occupied 43.6% and 35.8%, respectively, and it showed that the efficiency of pre-splitting was decreased. When more than 3 joint sets are randomly developed, however, the rock blocks in the range of 250~500 mm occupied 35% and there was no block bigger than 1,000 mm. This denotes that the blasting with pre-splitting was not effective. The numerical analysis using PFC2D showed that the blast damaged zone in a rock mass could be directly influenced by the pre-splitting. It is, therefore, required to investigate the discontinuity pattern on rock surfaces in advance, when the pre-splitting method is applied to excavate jointed rock slopes and to apply a flexible blating design with a consideration of the joint characteristics.