• Title/Summary/Keyword: 불안정 조건

Search Result 482, Processing Time 0.023 seconds

A Study on the Unstable behavior according to Lode and boundary condition of shelled space frame structure (쉘형 스페이스 프레임 구조물의 하중 및 경계조건에 따른 불안정 거동에 관한 연구)

  • Kim, Nam-Seok;Shon, Su-Deog;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.80-85
    • /
    • 2008
  • This paper investigate the structure instability properties of the shelled space frame structure. The large structure must have thin thickness for build the large space structure there fore structure instability review is important when we do structural design. The structure instability of the shelled structure accept it sensitively by varied conditions. This come to a nonlinear problem with be concomitant large deformation. In this study, it is compared unstable behavior according to lode and boundary condition of the shelled space frame structure through numerical method which considered geometrical nonlinear and grasped influence for the instability phenomenon and investigated the fundamental collapse mechanism.

  • PDF

Study of Flame Structure by Chemiluminescence and Laser Diagnostics in Model Gas Turbine Combustor (자발광 및 레이저 계측기법을 이용한 모형 가스터빈 연소기에서 화염구조 분석)

  • Yoon, Ji-Su;Kim, Min-Ki;Lee, Min-Chul;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.10-19
    • /
    • 2012
  • To eliminate the onset of combustion instabilities and develop effective approaches for control, flame structure is very important. In this study, we conducted experiments under various operating conditions with a model gas turbine combustor to examine the relation of combustion instability and flame structure by OH chemiluminescence and laser diagnostics of He-Ne laser absorbtion system. The swirling LNG($CH_4$)/air flame was investigated with overall equivalence ratio of 1.2 and dump plane fuel-air mixture velocity 25 ~ 70 m/s. We founded that the combustion instability phenomenon occurs at lower mixing velocity and higher mixing velocity conditions. We also concluded that fluid dynamical vortex frequency has major effects on the combustion instability characteristics at lower mixing velocity condition.

A Effect of the Shoulder Stabilizer Muscle Activity During a Push-up-Plus on a Different Condition Surface (다른 지면 조건에서의 푸시업 플러스 운동이 어깨 안정근의 근 활성도에 미치는 영향)

  • Kim, Jin-Seop;Lee, Dong-Yeop
    • Journal of Digital Convergence
    • /
    • v.10 no.1
    • /
    • pp.399-405
    • /
    • 2012
  • The purpose of this study was to compare the shoulder stabilizer muscle activity during a push up plus on a different conditioning surface. Eighteen healthy volunteers were tested. Surface EMG was recorded from the upper trapezius(UT), pectoralis major(PM), and serratus anterior(SA) using surface differential conditions. Measurements were performed for 7 days. The mean root mean square (RMS) of EMG activity was calculated. A one-way repeated measures analysis of variance was performed to compare RMS normalized values. The UT and PM did not show significant differences of electric activation amplitude in relation to different surface conditions(p>.05). However, the SA showed greater mean electric activation amplitude values on the push up plus exercise on a upper and lower unstable surface(p<.05). These results suggest that to improve SA EMG activity is more useful when performed on a upper and lower unstable surface conditions than on a stable surface conditions.

Study of Flame Structure by Chemiluminescence and Laser Diagnostics in Model Gas Turbine Combustor (자발광 및 레이저 계측기법을 이용한 모형 가스터빈 연소기에서 화염구조 분석)

  • Yoon, Ji-Su;Kim, Min-Ki;Lee, Min-Chul;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.367-376
    • /
    • 2012
  • To eliminate the onset of combustion instabilities and develop effective approaches for control, flame structure is very important. In this study, we conducted experiments under various operating conditions with a model gas turbine combustor to examine the relation of combustion instability and flame structure by OH chemiluminescence and laser diagnostics of He-Ne laser absorbtion system. The swirling LNG(CH4)/air flame was investigated with overall equivalence ratio of 1.2 and dump plane fuel-air mixture velocity 25 ~ 70 m/s. We founded that the combustion instability phenomenon occurs at lower mixing velocity and higher mixing velocity conditions. We also concluded that fluid dynamical vortex frequency has major effects on the combustion instability characteristics at lower mixing velocity condition.

  • PDF

Numerical Investigation of the Combustion Instability inside a Partially Premixed Combustor according to Fuel Composition (연료 조성에 따른 부분예혼합 연소기 내부 연소불안정 해석)

  • Nam, Jaehyun;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.24-33
    • /
    • 2021
  • Numerical study is conducted to analyze combustion instability in the partially premixed combustor. The simulations are performed according to fuel conditions, and Large Eddy Simulation(LES) model and PaSR combustion model are implemented in the solver. Comparison with the experimental result is conducted to confirm the validity of simulation, and quantitative and qualitative agreement is confirmed. The flame characteristics in the combustor are subsequently investigated, and the association with the occurrence of combustion instability is clarified. According to the simulation results, the flame length varies greatly depending on the fuel conditions. When the flame length becomes sufficiently long, flame-vortex interactions occurred around the wall sections, which works as the main cause of combustion instability.

액체 연료 추진기관의 연소 불안정 해석

  • 김용모;유용욱
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.8-8
    • /
    • 1998
  • 액체 추진제를 사용하는 연소기관내의 연소 불안정 현상에 대하여 수치적인 해석을 수행하였다 비정상 다차원 다상 유동장에 대한 Eulerian-Lagrangian 방법에 기반을 두고 수학적으로 모델 하였으며 속도-압력-밀도에 대한 결합메커니즘은 개선된 PISO 알고리즘을 사용하여 처리하였다. 연소실의 기하학적 형상 및 추진제의 분무조건이 액체 연료 추진기관의 연소 불안정 현상에 미치는 영향을 체계적으로 해석하였으며 액체 추진제의 증발 특성이 연소 불안정 현상의 Driving Mechanism에 미치는 영향을 상세히 분석하였다.

  • PDF

KSR-III 액체 로켓엔진 설계점 연소시험

  • Kim, Seung-Han;Cho, Gyu-Sik;Han, Yeoung-Min;Seo, Seong-Hyun;Moon, Il-Yoon;Lee, Kwang-Jin;Kim, Jong-Kyu;Seol, Woo-Seok;Lee, Soo-Yong
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.164-170
    • /
    • 2003
  • KSR-III engine with film-cooled baffle was tested. The purpose of this test is to verify the effect of ablative baffle on avoiding combustion instability which occurred in the acoustic cavity case. The engine had expansion ratio of 5.04 and the test condition was design condition(oxidizer mass flow rate 42.04, and fuel 17.95 kg/s). In the test, combustion instability did not occur. So, the effect of film-cooled baffle on avoiding combustion instability was verified.

  • PDF

Effects of Acoustic Boundary Conditions on Combustion Instabilities in a Gas Turbine Combustor (음향 경계 조건이 가스터빈 연소기에서의 연소불안정에 미치는 영향)

  • Lim, Jaeyoung;Kim, Deasik;Kim, Seong-Ku;Cha, Dong Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.15-23
    • /
    • 2015
  • This study predicts the basic characteristics of combustion instabilities in a gas turbine lean premixed combustor using ASCI3D code which is a FEM(Finite Element Method)-based Helmholtz solver. The prediction results show the good agreement with the measured data in modeling the overall combustion instability features, however, the code is found to overpredict the unstable conditions. As one of the efforts to improve the model accuracy, the effects of acoustic boundary conditions on the instability growth rate are analyzed. As a result, it is shown that the acoustic reflection coefficient has a great impact on the instability and the prediction accuracy can be enhanced by defining the precise acoustic conditions.

High Frequency Oscillations and Low Frequency Instability in Hybrid Rocket Combustion (하이브리드 로켓 연소실험에서의 고주파수 진동과 저주파수 연소불안정)

  • Chae, Heesang;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.1021-1027
    • /
    • 2018
  • Experimental studies have been conducted to verify that the positive coupling between pressure oscillation (p') and combustion oscillation (q') of high frequency range is a prerequisite for the initiation of low frequency instability in hybrid rocket combustion. The post-chamber length and combustion equivalence ratio were selected as critical parameters to control the phase difference between p' and q', and p' amplitude in relation to the suppression of LFI. In the results, even if the post-chamber length increases, the phase difference between p' and q' maintains below pi/2, which is a necessary condition for the LFI development, but the amplification of RI (Rayleigh index) was substantially decreased leading to a stable combustion. In addition, results confirmed that combustion stability is achieved by changing the momentary equivalence ratio and/or by suppressing the positive coupling status of p' and q'. Thus, the periodic amplification of RI was identified as the middle path of the mechanism of occurrence of LFI.

RCGA-based PID control of unstable processes concerned with the constraints (제약조건을 고려한 불안정 시스템의 RCGA 기반 PID 제어)

  • Lee, Yun-Hyung;Yang, A-Young;So, Myung-Ok;Oh, Sea-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.85-90
    • /
    • 2013
  • PID control for unstable processes with time delay is not easy to apply because of unstability due to the poles existing on left-hand side in s-plane and the effect of time delay. In this paper, the authors consider the PID controller design technique in case of predefining overshoot or rising time by designer according to control environment. To deal with constraint problem like this, in this paper, the RCGA incorporating the penalty strategy is used. This is the method that if the RCGA violates given constraints, the defined penalty function is summed to the evaluation function depending on the severity and then the given constraint problem is converted to non-constraints optimization problem. The proposed method is applied to the unstable FOPTD(First Order Plus Time Delay) system and simulations are accomplished to illustrate the set-point tracking performance.