• Title/Summary/Keyword: 불소 필름

Search Result 38, Processing Time 0.02 seconds

PREVENTIVE EFFECT OF FLUORIDE-CONTAINING ADHESIVE FILM MADE BY NANO (나노기술을 이용해 제작한 불소함유 접착필름의 치아우식증 예방효과)

  • Park, Duck-Yong;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.4
    • /
    • pp.662-670
    • /
    • 2008
  • The purpose of this in vitro study was to evaluate the effect of fluoride containing adhesive film on prevention of enamel demineralization. Eighty bovine enamel blocks were divided randomly into 4 groups of 25: (1) APF gel applied ; (2) CavityShield$^{TM}$ applied; (3) 3% fluoride film applied; (4) 5% fluoride film applied; Early caries lesions were produced by placing each specimen into demineralization solution at pH 4.0 for 72 hours. Then lesion of the surface microhardness were measured by the Vicke's hardness test and the lesions depth were measured by polarizing light microscope. The results of the present study are as follows: 1. Difference of microhardness value ($M{\pm}SD$) between control and experimental side was the highest in group II, followed by group IV, III, I but, no significant difference was between group II, III and IV. 2. Difference of mean lesion depth ($M{\pm}SD$) between control and experimental side was the highest in group II, followed by group III, IV and I but no significant difference was between group III and IV. The results of the present study indicate that the fluoride film application is more effective than APF gel and is similar to fluoride varnish application for prevention of dental caries.

  • PDF

Preparation of Poly(vinylbenzyl chloride)-grafted Fluoropolymer Films by Using Radiation Grafting Method (방사선 그래프팅에 의한 염화비닐벤질 고분자가 그래프트된 불소필름의 제조)

  • Fei, Geng;Sohn, Joon-Yong;Lee, Youn-Sik;Nho, Young-Chang;Shin, Jun-Hwa
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.464-468
    • /
    • 2010
  • In this study, a vinylbenzyl chloride (VBC) monomer was successfully grafted onto the several fluoropolymer films including poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP), poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA), and poly(ethylene-co-tetrafluoroethylene) (ETFE) films by using a simultaneous irradiation method. The results indicated that PVBC graft polymer can be easily grafted onto the ETFE film than other fluorinated films under the same irradiation condition. The grafted films were characterized by using FTIR, TGA, and SEM-EDS instruments. The elongation at the breaking of the grafted films was found to decrease with an increase of degree of grafting (DOG). The PVBC-grafted ETFE films were found to have better mechanical properties than other PVBC-grafted fluorinated films.

Optical and Physical Properties of Covering Materials for Plastic Greenhouse (플라스틱하우스용 피복재의 광학.물리적 특성)

  • Kwon, Joon Kook;Choi, Young Hah;Park, Dong Kum;Lee, Jae Han;Um, Yeong Cheon;Park, Joong Choon
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.141-147
    • /
    • 2001
  • To compare to the optical and physical properties of covering materials for plastic greenhouse, EVA(ethylene vinyl acetate, 0.08 mm), polyorefine antifog (0.1 mm), fluoric (0.06 mm), diffused (0.15 mm), polyorefine antidrop (0.15 mm) and PET (polyethylene terephthalate, 0.5 mm) films were used. The small greenhouse (5.4$\times$18.5$\times$2.9 m, W$\times$L$\times$H) investigated during 3 years form 1997 to 1999. After covering materials were used for greenhouse covering during 30 months, UV (300-400 nm) transmittances of diffused film and PET were appeared from 25 to 26%, while those of fluoric film and the other films were 76% and from 63 to 67%. For PAR (photosynthetically active radiation, 400-700 nm), the transmittances of fluoric, antidrop, PET, antifog, EVA, and diffused film were 86.5%, 80.5%, 76.3%, 75.5%, 74.1% and 61.9% respectively. The losses of PAR transmittance of EVA and the antidrop film during period between 7 days and 30 months were higher value 12% and lower value 6% than any other film. Under the canopy of tomato plants, light intensities of the diffused film and the antifog film were 2.5 times and 1.4 times higher than those of PET. Tensile resistances of fluoric film at the break point were the higher than those of antifog film and diffused film. While impact resistance of the antidrop film was the highest value, but the fluoric film was the lowest. Air temperature inside the greenhouse for the day showed to be changed the similar light transmittance of the films. But the increasing order of air temperature for the night was PET, fluoric, antidrop, diffused, antifog and EVA film. Especially, air temperature in the PET was 4$^{\circ}C$ higher than that in the EVA. Solar radiations of the fluoric film, the antidrop film, PET and antifog film in the greenhouse were 32%, 15%, 11% and 4% higher than those of PET. However, those of the diffused film was 7% less than PET.

  • PDF

Effects of High Performance Greenhouse Films on Growth and Fruit Quality of Tomato (기능성 피복재가 토마토 생육 및 품질에 미치는 영향)

  • Kwon, Joon-Kook;Cho, Myeomg-Whan;Kang, Nam-Jun;Kang, Yun-Im;Park, Kyoung-Sub;Lee, Jae-Han
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.232-237
    • /
    • 2009
  • This study was performed to investigate the effect of high performance greenhouse films on growth and fruit quality of tomato. For this purpose, polyolefin (PO), fluoric, antidrop, antifog and thermal films were compared to normal film, ethylene vinyl acetate (EVA). In spectral irradiance of the films, UV ($300{\sim}400nm$) transmittance was highest in fluoric film and lowest in PO film. PAR (photosynthetically active radiation, $400{\sim}700nm$) transmittance was higher in fluoric, thermal and PO film, and near infrared ray (NIR, $700{\sim}1,100nm$) transmittance was higher in high performance films, compared to the EVA film. Total light transmittance was higher in order of fluoric, antifog, anti drop, PO, thermal, and EVA film. Day air temperature in greenhouse was highest under fluoric film and lowest under EVA film due to the light transmittance, while night air temperature was highest under PO and anti drop film due to the thickness of film. Tomato fruits grown under the high performance films had 0.2 to $0.5^{\circ}Bx$ higher soluble solids and 15 to 30% higher lycopene content, compared to those grown under the EVA film. The results showed that tomato fruit quality such as soluble solids and lycopene content can be heightened in terms of much irradiation and better light quality of high performance films, compared to the nomal film, EVA film.

Changes in the Chemical Structure and the Thermal/Physical Properties of Fluoropolymer Films Induced by Gamma Irradiation under Various Environments (다양한 환경에서 감마선으로 조사된 불소고분자 필름들의 구조 및 열적/물성 변화)

  • Choi, Ji Sun;Sohn, Joon-Yong;Shin, Junhwa
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.457-463
    • /
    • 2014
  • In this study, the changes in the chemical structure and the physical property of fluoropolymer films (PTFE, FEP, PFA, PVDF, and ETFE) induced by $Co^{60}$ gamma ray in air, $N_2$, and vacuum environments were investigated. FTIR spectra of the irradiated fluoropolymers indicate that the oxidation proceeded by the reaction of radicals generated by irradiation with oxygen in air. The changes in the heat of fusion and the degree of crystallinity of the irradiated fluoropolymers were investigated using DSC and the results indicate that the scission and crosslinking reactions of the irradiated fluoropolymers were largely influenced by the chemical structure. It was also found that the mechanical property of the irradiated fluoropolymer films under an air atmosphere was significantly decreased.

Effect of Fluorination and Ultrasonic Washing Treatment on Surface Characteristic of Poly(ethylene terephthalate) (불소화 및 초음파 수세가 폴리(에틸렌 테레프탈레이트) 필름의 표면 특성에 미치는 영향)

  • Kim, Do Young;In, Se Jin;Lee, Young-Seak
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.316-322
    • /
    • 2013
  • In this study, poly(ethylene terephthalate) (PET) was treated with fluorination and ultrasonic washing treatment for hydrophilic modification of PET film. We measured the change of surface modified PET film surface characteristics using contact angle, surface free energy, FE-SEM, AFM and XPS. After direct fluorination and ultrasonic washing treatment, the water contact angle was measured to be $10.81^{\circ}$, 85% reduction compared to the untreated PET film. Total surface free energy has been measured to be $42.25mNm^{-1}$, 650% increase compared to the untreated PET film. Also RMS roughness has been measured to be 1.965 nm, 348% increase compared to the untreated PET film. Hydrophilic functional group C-OH bond concentration has increased approximately 3 times. These results are attributed to the hydrophilic functional group and cavitation due to chemical etching. From this result, it was suggested that the fluorination-ultrasonic washing treatment method could be useful to make PET film surface hydrophilic.

Radiation-Induced Graft Copolymerization of 2-hydroxyethyl-methacrylate and Styrene onto Polytetrafluoroethylene (불소수지 필름에 2-Hydroxyethyl methacrylate와 스틸렌의 방사선 그라프트 공중합)

  • Nho, Young-Chang;Garnett, J.L.;Dworjanyn, P.A.;Jin, Joon-Ha
    • Applied Chemistry for Engineering
    • /
    • v.3 no.3
    • /
    • pp.491-498
    • /
    • 1992
  • Graft polymerization of 2-hydroxyethyl methacrylate(HEMA) and styrene, from both their binary and unitary systems, onto polytetrafluoroethylene(PTFE) film was investigated by means of the simultaneous ${\gamma}-ray$ induced method. The effect of various parameters such as monomer concentration, dose rate, absorbed dose, HEMA/styrene feed ratios and the type of diluent on the extent of grafting in unitary and binary systems was studied. It was observed that when unitary HEMA was used for grafting, the grafting extent was very slight, whereas when comonomers were used, a good grafting yield could be obtained. Inclusion of sulfuric acid in the monomer solution resulted in enhanced grafting yields.

  • PDF

Preparation of O-I hybrid sols using alkoxysilane-functionalized amphiphilic polymer precursor and their application for hydrophobic coating (알콕시 실란기능화 양친성 고분자 전구체를 이용한 유-무기 하이브리드 졸 제조 및 이를 이용한 발수 코팅)

  • Lee, Dae-Gon;Kim, Nahae;Kim, Hyo Won;Kim, Juyoung
    • Journal of Adhesion and Interface
    • /
    • v.20 no.4
    • /
    • pp.146-154
    • /
    • 2019
  • In this study, alkoxysilane-functionalized amphiphilic polymer (AFAP), which have hydrophilic segment and hydrophobic segment functionalized by alkoxysilane group at the same backbone, was synthesized and used as a dispersant and control agent for reaction rate in the preparation of colloidally stable organic-inorganic (O-I) hybrid sols. After reaction with fluorosilane compounds, fluorinated O-I hybrid sols were prepared and coated onto glass substrate to form hydrophobic O-I hybrid coating films through low-temperature curing process. Surface hardness and hydrophobicity of cured coating films were varied with type of solvent and composition of AFAP and fluorinated alkoxysilane compounds. At appropriate solvent and composition of fluorinated alkoxysilane compounds, O-I hybrid coating film having high transparency and surface hardness could be prepared, which could be applicable to cover window of solar cell and displays.