• 제목/요약/키워드: 불변특징

검색결과 217건 처리시간 0.022초

특징의 효과적 병합에 의한 광고영상정보의 분류 기법 (A Grouping Method of Photographic Advertisement Information Based on the Efficient Combination of Features)

  • 정재경;전병우
    • 전자공학회논문지CI
    • /
    • 제48권2호
    • /
    • pp.66-77
    • /
    • 2011
  • 본 논문은 특징을 효과적으로 병합하여 계층적 색인구조를 적용하는 광고영상의 분류기법에 대한 체계적 방법을 제안한다. 본 방법은 온라인 및 오프라인 상의 광고 영상 정보 관리를 위한 효과적인 응용으로써, 특별히 광고 영상정보의 추적을 위한 전처리 과정을 제공한다. 이를 위하여 전체 영상에 대한 일반적 정보를 포함하는 전역특징과 영상의 지역적 특성에 기반하는 지역특징을 고려한다. 고안된 지역특징은 영상 회전, 스케일링, 잡음추가, 빛의 변화에 불변하여 아핀(Affine) 변환에 의한 화면 차 영상에 대하여도 신뢰성 높은 매칭 도를 얻을 수 있고 동질의 영상 쌍을 검색하는데 있어서도 높은 정확도를 보여준다. 제안 방법은 우선 전역특징으로 전체영상자료에서 다수의 영상 쌍들로 개략적인 영상 군을 구성한 후에, 영상군안에서 지역특징에 의한 동질 영상 쌍들 즉 정밀한 영상 군들로 분리하는 정밀 매칭을 실행한다. 실행시간을 단축하기 위해 전형적인 클러스터링으로 전역특성이 유사한 영상들끼리 그룹화 함으로서 지역특징에 의한 동질 영상 쌍 간 과도한 매칭 시간의 문제점을 극복한다.

비분리 영상처리에서 이중 트리 웨이브렛 변환을 사용한 디지털 영상 성능 개선에 관한 연구 (A Study on Enhancement of Digital Image Performance Using Dual Tree Wavelet Transformation in Non-separable Image Processing)

  • 임중희;지인호
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권1호
    • /
    • pp.65-74
    • /
    • 2012
  • 이중 트리 이산 웨이브렛 변환은 이산 웨이브렛 변환 보다 우수하며, 이동 변이(shift variance)의 웨이브렛 보다 적은 계산량을 가진다. 이러한 특성들은 잡음 제거, 텍스쳐 분할 등에서 효율적으로 사용된다. 이중 트리 이산 웨이브렛 변환을 수행하는 과정에 Quincunx 표본화를 적용하였다. 이 방법은 이중 트리 이산 웨이브렛 변환의 주된 특징인 이동 불변성의 성질과 다양한 방향성의 특징 그리고 비분리 영상처리 효과를 증가시킬 수 있다. 본 논문에서는 제안된 방법에 대한 성능을 평가하고 실험결과를 제시하였다. 따라서 비분리 처리특성으로 인위적인 패턴을 갖는 디지털 영상에 대해서 웨이브렛 변환의 특징을 얻을 수 있어 효율적인 영상처리가 가능하다.

스트링 구조의 MHC 인식부를 이용한 지문 매칭알고리즘 (Fingerprint Matching Algorithm using MHC Detector Set of String Structure)

  • 심귀보;정재원;이동욱
    • 한국지능시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.279-284
    • /
    • 2004
  • 사람의 지문은 그 인식 성능과 종생 불변성 및 만인 부동성으로 인하여 신원 인증을 위한 생채 인식에서 가장 많이 이용되고 있다. 최근에는 지문인식의 신뢰성에 더하여, 그 인증속도가 지문인식을 각종 보안 어플리케이션에 응용하는데 있어서 매우 중요한 요소로 부각되고 있다. 본 논문에서는 생체면역계에서의 자기 비자기구별 과정에 착안한 빠르고 신뢰성 있는 지문인식 알고리즘을 제안한다. 제안한 매칭알고리즘은 지문영상의 특징점과 방향성분을 반영한 자기 공간 (self-space)과 MHC 인식부를 이용한 1차 매칭과, 특징점의 로컬 구조(local structure)를 이용한 2차 매칭의 두 단계로 구성된다. 이러한 2단계의 매칭을 통하여 인식의 신뢰성을 유지하면서 인증속도를 향상시켰다.

어안렌즈를 이용한 비전 기반의 이동 로봇 위치 추정 및 매핑 (Vision-based Mobile Robot Localization and Mapping using fisheye Lens)

  • 이종실;민홍기;홍승홍
    • 융합신호처리학회논문지
    • /
    • 제5권4호
    • /
    • pp.256-262
    • /
    • 2004
  • 로봇이 자율주행을 하는데 있어 중요한 요소는 로봇 스스로 위치를 추정하고 동시에 주위 환경에 대한 지도를 작성하는 것이다. 본 논문에서는 어안렌즈를 이용한 비전 기반 위치 추정 및 매핑 알고리즘을 제안한다. 로봇에 어안렌즈가 부착된 카메라를 천정을 바라볼 수 있도록 부착하여 스케일 불변 특징을 갖는 고급의 영상 특징을 구하고, 이 특징들을 맵 빌딩과 위치 추정에 이용하였다. 전처리 과정으로 어안렌즈를 통해 입력된 영상을 카메라 보정을 행하여 축방향 왜곡을 제거하고 레이블링과 컨벡스헐을 이용하여 보정된 영상에서 천정영역과 벽영역으로 분할한다. 최초 맵 빌딩시에는 분할된 영역에 대해 특징점을 구하고 맵 데이터베이스에 저장한다. 맵 빌딩이 종료될 때까지 연속하여 입력되는 영상에 대해 특징점들을 구하고 맵과 매칭되는 점들을 찾고 매칭되지 않은 점들에 대해서는 기존의 맵에 추가하는 과정을 반복한다. 위치 추정은 맵 빌딩 과정과 맵 상에서 로봇의 위치를 찾는데 이용된다. 로봇의 위치에서 구해진 특징점들은 로봇의 실제 위치를 추정하기 위해 기존의 맵과 매칭을 행하고 동시에 기존의 맵 데이터베이스는 갱신된다. 제안한 방법을 적용하면 50㎡의 영역에 대한 맵 빌딩 소요 시간은 2분 이내, 위치 추정시 위치 정확도는 ±13cm, 로봇의 자세에 대한 각도 오차는 ±3도이다.

  • PDF

영역기반 주성분 분석 방법과 보조정보를 이용한 얼굴정보의 비트열 변환 방법 (A Study on A Biometric Bits Extraction Method Using Subpattern-based PCA and A Helper Data)

  • 이형구;정호기
    • 대한전자공학회논문지SP
    • /
    • 제47권5호
    • /
    • pp.183-191
    • /
    • 2010
  • 생체인식은 개인의 유일하면서 변화하지 않는 생체의 특징을 이용하여 개인의 본인 여부를 판별하는 방법으로써 널리 사용되어 왔다. 생체정보의 고유 불변한 특징을 저장하는 것은 개인정보의 노출에 따른 보안상의 문제점을 갖고 있으며 이를 해결하기 위해 제안된 방법이 가변생체인식 (cancelable biometrics)이다. 가변생체인식은 생체정보의 도난이나 도용으로부터 강인하며 재생성 가능한 생체템플릿을 제공하는 생체 인식방법이다. 본 논문에서는 변환 생체인식의 한 가지 방법으로써 얼굴 생체정보의 새로운 이진화 방법을 제안한다. 얼굴 생체정보의 이진화를 위한 특징추출은 얼굴정보의 부분적 변화에 강인한 영역기반 주성분 분석(Subpattern-based PCA)을 이용하였으며 이로부터 얻어진 특징을 보조정보에 기반한 방법으로 이진화 하였다. 획득된 이진비트열은 영역기반 주성분 분석의 사용으로 여러 얼굴 영역의 고려와 함께, 선택된 주성분 개수만큼의 계수들에 대한 이진화 값들을 포함하고 있다. 이러한 서로 다른 얼굴영역의 여러 주성분들에서 추출된 이진비트열중 구분력이 좋은 비트 값들을 선택하였으며, 선택된 비트 값들은 이진화를 위한 보조 정보가 노출된 경우에서도 원 얼굴특징벡터보다 향상된 인식성능을 보여준다.

SIFT와 신경망을 이용한 학습 기반 차량 번호판 검출 (Learning-based Detection of License Plate using SIFT and Neural Network)

  • 홍원주;김민우;오일석
    • 전자공학회논문지
    • /
    • 제50권8호
    • /
    • pp.187-195
    • /
    • 2013
  • 차량 번호판 검출의 기존 연구들은 대부분 높은 성능을 얻기 위해 영상 획득 환경을 제한한다. 본 논문은 제약사항이 적은 환경에서 다양한 종류의 차량 번호판을 검출하기 위해 SIFT와 신경망을 이용한 새로운 방법을 제안한다. SIFT는 영상의 크기, 회전 변화에 불변하는 지역특징으로서 처리해야 할 환경이 고정되지 않은 경우에도 분별력이 뛰어나다. 영상에서 추출한 SIFT를 번호판 내부의 것(내부 부류)과 외부의 것(외부 부류)으로 나누어 2부류 분류기를 학습한다. 분류기는 신경망을 사용하며, 찾고자 하는 번호판의 종류를 학습 집합에 포함하는 것으로 다양한 종류의 번호판을 동일한 알고리즘으로 검출할 수 있다. 제안하는 방법은 입력 영상에서 지역특징을 추출하고 미리 학습한 분류기로 번호판 내부 부류를 가려낸다. 분류기의 성능이 높지 않더라도 분류 결과 내부 부류는 번호판 내부에 밀집하여 나타나고 번호판 외부에서는 흩어져 나타난다. 이러한 특성을 이용해 지역특징 맵을 만들고, 이 맵에서 임계값 이상인 전역 최댓값을 번호판 영역으로 검출한다. 다양한 환경에서 데이터 베이스를 수집하고 지역특징 분류와 번호판 검출 알고리즘을 실험한다. 지역특징을 분류기로 분류한 결과 정인식률은 97.1%, 정확률은 62.0%, 재현율은 50.2%를 보였다. 정인식률에 비해 정확률과 재현율은 낮았지만, 번호판 검출 결과 98.6%의 높은 검출 성능을 보였다.

광학식 동작 포착 장비를 이용한 노이즈에 강건한 얼굴 애니메이션 제작 (Noise-Robust Capturing and Animating Facial Expression by Using an Optical Motion Capture System)

  • 박상일
    • 한국게임학회 논문지
    • /
    • 제10권5호
    • /
    • pp.103-113
    • /
    • 2010
  • 본 논문은 얼굴의 표정과 몸 동작을 광학식 동작 포착장비를 활용하여 동시에 포착하는 경우에 있어 얼굴 부위 마커들에 대한 노이즈에 강건한 데이터 처리 방법에 대해 다룬다. 일반적인 얼굴 표정만 포착하는 경우와 달리, 몸의 움직임과 동시에 포착할 경우 포착용 카메라가 멀리 있어 얼굴에 붙인 마커들의 궤적 데이터는 특별한 처리를 요한다. 특히 궤적의 표식화, 빈 곳 메우기, 노이즈 제거의 과정이 필수적이며, 이러한 과정을 위해 본 논문에서는 지역좌표에 기반을 둔 궤적 데이터 처리 방법을 제안한다. 지역 좌표는 강체변형에 불변한 특징이 있으며, 얼굴모양의 국지적인 변화를 의미하여, 궤적 데이터처리에 효과적으로 활용 될 수 있음을 보였다. 또한 제안한 방법을 활용하여 애니메이션을 제작해 실제 제작 환경에 적용 가능함을 보였다.

의료영상에서의 강인한 워터마킹 기법에 관한 연구 (Study of robust watermarking method in medical image)

  • 남기철;박무훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.255-258
    • /
    • 2003
  • 디지털화 된 의료영상에서의 데이터 인증 및 변형 여부의 판별을 위해서 디지털 워터마킹을 사용한다. Fourier변환과 Log-Polar변환을 이용한 Fourier-Mellin기법은 영상의 RST변환에 불변한 특징을 가진다. 하지만 실질적인 구현을 위해서는 화소위치가 일치하지 않는 것에 따라 영상값을 보간해야 하는 것과 그에 따른 워터마크의 데이터 손실, 계산량 증가, 원영상의 화질 저하를 해결해야한다. Polar좌표 변환의 손실을 없애기 위해서 Look up table을 사용하였다. 진단이후, 의료영상의 ROI 영역을 중심으로 Polar좌표 변환과 Discrete fourier변환을 하였다. 주파수 진폭성분의 대칭성을 유지하면서, 가우시안 분포의 랜덤 벡터와 이진 영상을 워터마크로 삽입하여 다양한 조건 하에서의 결과를 관찰하였다.

  • PDF

선형논리에 기반한 불확실성 데이터베이스 의미론 (Semantics of Uncertain Databases based on Linear Logic)

  • 박성우
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권2호
    • /
    • pp.148-154
    • /
    • 2010
  • 불확실성 데이터베이스의 의미론 정의는 보통 주어진 불확실성 데이터베이스를 여러 개의 관계형데이터베이스로 변환하는 산술적 접근방법을 취한다. 이 논문에서는 불확실성데이터베이스를 논리이론으로 변환하는 논리적 접근방법을 통해서 불확실성 데이터베이스의 의미론을 정의하고자 한다. 본 논문에서 제안하는 의미론의 가장 특징적인 면은 기존의 논리적 접근방법에서 사용해온 명제논리 대신에 선형논리를 논리적 근간으로 이용한다는 점이다. 선형논리는 논리식을 불변진리가 아닌 소비가능한 자원으로 해석하기 때문에 불확실성 데이터베이스의 의미론을 정의하는데 적합하다. 본 논문의 핵심 결과는 선형논리에 기반한 불확실성 데이터베이스의 의미론이 산술적 접근방식에서 설명하는 불확실성 데이터베이스의 의미론과 동등하다는 것이다.

객체영역의 컬러비와 모멘트를 이용한 내용기반 영상검색 (Content-based Image Retrieval using Color Ratio and Moment of Object Region)

  • 김은경;오준택;김욱현
    • 정보처리학회논문지B
    • /
    • 제9B권4호
    • /
    • pp.501-508
    • /
    • 2002
  • 본 논문에서는 영상 내에 존재하는 객체영역의 컬러비와 모멘트를 이용한 영상검색을 제안한다. 객체는 영상의 중심에 위치한다는 가설 하에 미리 정의한 중심영역의 우세컬러를 기반으로 수평-수직 투영을 이용하여 객체영역과 배경영역을 분할함으로써 최적의 공간정보를 획득한다. 또한 영상 내 객체의 회전 및 크기에 불변한 특성을 가지기 위해 컬러비와 모멘트를 특징정보로 이용하며 유사성 측정은 컬러 히스토그램의 구간별 연관성을 고려하기 위해 변형된 히스토그램 인터섹션을 이용한다. 실험결과 제안한 방법이 기존의 영역분할에 의한 방법보다 효율적인 결과를 보였다.