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Abstract In the study of the formal semantics of uncertain databases, we typically take an
algebraic approach by mapping an uncertain database to possible worlds which are a set of relational
databases. In this paper, we present a new semantics for uncertain databases which takes a logical
approach by translating uncertain databases into logical theories. A characteristic feature of our
semantics is that it uses linear logic, instead of propositional logic, as its logical foundation. Linear
logic is suitable for a logical interpretation of uncertain information because unlike propositional logic,
it treats logical formulae not as persistent facts but as consumable resources. As the main result, we
show that our semantics is faithful to the operational account of uncertain databases in the algebraic

approach.
Key words :

1. Introduction

An important problem in database research is to
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Uncertain database, semantics, linear logic

study the semantics of uncertain databases (e,
“what is the meaning of a given uncertain data-
base?”). Prior work on the semantics of relational
databases (without uncertainty) is categorized into
the algebraic approach advocated by Imielin’ski and
Lipski {1] and the logical approach proposed by
Reiter {2]. In our context of uncertain databases,
the algebraic approach maps an uncertain database
to a unique set of relational databases, or possible
worlds, whereas the logical approach specifies how
to translate an uncertain database to logical theo—
ries. The algebraic approach is useful when ana-
lyzing the efficiency of a specific implementation of
database operations, and the logical approach is
useful when proving the correctness of various

database operations.
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This paper develops a semantics for uncertain
databases based on the logical approach. We restrict
ourselves to uncertain databases that use two kinds
of extended tuples, disjunctive tuples and maybe
tuples, but no attribute variables. (Logical accounts
of uncertain databases using attribute - variables
have been studied previously, for example, in [2-4].)
A disjunctive tuple T1©--OT, denotes an exclusive
disjunction between ordinary tuples 77 through T
Given that Z is a disjunctive tuple, a maybe tuple
Z? states that Z may be the case, without ruling
out the possibility that Z is not the case. The use
of disjunctive tuples and maybe tuples is adopted
in recent work on uncertain databases [5,6].

In order to achieve a semantics that is both
general (permitting Z in Z? to be a disjunctive
tuple) and compositional (translating individual ex-
tended tuples independently of each other), we take
a radical departure from the traditional logical
approach by choosing as the logical foundation not
propositional logic but linear logic [7]. Unlike pro-
positional logic which interprets logical formulae as
persistent facts, linear logic treats logical formulae
as resources which can be consumed to produce
new resources, or equivalently, as descriptions of
transient states. As such, linear logic offers consi-
derably simpler solutions than propositional logic to
those problems that require resource interpretations
or need to model state transitions. Based on linear
logic, our semantics also interprets extended tuples
as descriptions of consumable resources. As the
main result, we show that the semantics is faithful
to the operational account of uncertain databases in
the algebraic approach.

The rest of this paper is organized as follows.
Section 2 clarifies the goal of our work. Section 3
gives an introduction to linear logic. Section 4
develops a semantics based on linear logic and
proves the main result. Section 5 discusses related
work and Section 6 concludes.

2. Preliminaries

We use the following predicates in examples
where x, y, and z are term variables:
» Eat(x,y) means that person x wants to eat
meal y.

» Where(y, z) means that meal y is served at
restaurant z.

« Go(x, z) means that person x visits restaurant z.

2.1 Syntax for uncertain databases

We formulate an uncertain database U as a set
of extended tuples, or x-tuples, X1, -, Xn. A rela-
tional database R is a special case of an uncertain
database which is a set of ordinary tuples T1, -, Th.

uncertain database U %= - | X, U

n= . | TR

Note that both uncertain databases and relational

uncertain database R

databases can be empty.

Z=— R
Z5Z' 'R

Z' = R

©Z - R

{G i
(072 7 oF)

PH-PD
Z— R

Lo 129 X—=R UoR WU,
Z?7— R

77, =W TXUSRER
Fig. 1 Rules for U= R

1,

An x-tuple is either a disjunctive tuple Z or a
maybe tuple Z. A disjunctive tuple is either an
ordinary tuple 7 or an exclusive disjunction 21022
between two disjunctive tuples Z1 and Z2. A tuple
has the form P(f1, - t:) which applies a predicate P
to a sequence of terms £, -+ t.. We abbreviate P(t,

“tn) as P(Z).

tuple T = P(t)
disjunctive tuple 2 u= T|lzeoZz
x - tuple X = zZ1z?

An x-tuple is well-formed if all tuples in it
share the same predicate. For example, Eat(Tom,
Pizza) ©Eat(Tom, Soup) is well-formed whereas Eat
(Tom, Pizza) ©Where(Pizza, R1) is not. An uncer-
tain database is well-formed if all x-tuples in it
are well-formed and share the same predicate. We
consider only well-formed uncertain databases.

Here is an example of an uncertain database
using the predicate Eat(x, v):

U = Eat(Tom, Pizza) ©Eat(Tom, Soup),

Eat(John, Salad) ©Eat(Jane, Steak)

U says: 1) Tom wants to eat either Pizza or
Soup; 2) John may want to eat Salad; 3) Jane
wants to eat Steak.

2.2 Instantiating uncertain databases

We write U= R to mean that relational database

R is an instance of uncertain database U. Figure 1
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shows the rules for deducing U= R which follow
the style of the big-step operational semantics for
programming languages [8] (where we regard U as
a program, R as a value, and => as an evaluation).
For example, the rule |®; says that Z®Z =R
holds whenever Z<>R holds, and the rule |Og
says that ZO®Z' R holds whenever Z' R
holds. Note that there can be multiple relational
databases to which the same uncertain database
instantiates. We may think of the system in Figure
1 as the operational account of uncertain databases
in the algebraic approach. The rules 1®; and 1Og
suggest that © is associative and commutative.

As an example, U in Section 2.1 instantiates to
one of the following relational databases:

1 = Eat(Tom, Pizza), Eat(John, Salad),

Eat(Jane, Steak)
Ry = Eat(Tom, Soup), Eat(John, Salad),
Eat(Jane, Steak)

FRs = Eqt(Tom, Pizza), Eat(Jane, Steak)

Ri = Eat(Tom, Soup), Eat(Jane, Steak)

2.3 Goal

The goal of our work is to specify a semantics
for uncertain databases with a semantic function F
from uncertain databases to logical formulae. The
semantic function F needs to satisfy the following
requirement’

* F(U) logically implies F(R) if and only if U= R.

It says that F is faithful to the operational
account of uncertain databases given in Figure 1.
Then the problem of testing U< R reduces fo the
problem of checking the relation between logical
formulae F(U) and F(R).

3. Linear logic

This section presents a decidable fragment of
linear logic that our semantics uses. Instead of a
model-theoretic approach, we take a proof-theoretic
approach which relies on inference rules to deduce
new logical theories from existing logical theories.
As we will see, the proof-theoretic approach is a
natural choice because inference rules easily express
the relationship between uncertain databases and
their corresponding relational databases (which are
equivalent to possible worlds in the algebraic
approach).

2zl W & A 37 A A 2 TQ0102)

3.1 Linear logic with linear hypotheses

In linear logic, every formula denotes a resource
that can be consumed to produce new resources. It
uses the following inductive definition of formulae;
we use metavariables A, B, C for formulae:
formula A = P(H)|A®AlA&AIA~AILIT

For predicates, we use the same notation P(Z) that
we use for tuples in uncertain databases; hence
tuples in uncertain databases can be thought of as
predicates in linear logic. A simultaneous. conjunction
A ® B denotes a pair of resources A and B; hence
consuming A ® B produces both A and B. An
alternative corjunction A & B denotes a resource
that produces one of A and B as requested: hence
we can choose to produce from A & B either A or B,
but not both. A [inear implication A—B is a
resource that produces B when

Init AAB=C L A=A A=B

M T AGBE=SC % AASAGB

AA=C AB=C &Ls

AARB=C BALE=T

A=A A=B 2 A=A A B=C A A= B

Ao Akl YR AN ASEST Yy Py
TR

A=C
Ai=c ¥ IR Zo¥F

A=A 8R

&Ly

ol - R

Fig. 2 Inference rules in the sequent calculus for
linear logic

combined with A; hence consuming both A and
A ~ B produces B. The unit 1 denotes no resource,
or “nothing.” The top T denotes an unspecified
resource, or “something.”

We formulate linear logic as a sequent calculus
which is equivalent to other formulations such as
the natural deduction system, but simplifies proofs
of metatheorems in Section 4 (because it generates
only normal proofs). The basic judgment in the
sequent calculus is a linear sequent A=>A where a
linear context A is a set of formulae:
= |44

A=A means that we have to produce a new

linear context A

resource A by consuming every existing resource
in A exactly once, ie., linearly. (Hence we use
such terms as “linear” sequents and “linear” con-
texts.) Note that the definition of A=A implies
that we have to consume all resources in A. That
is, A=A does not hold if some resources in A
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remain unconsumed. We say that two formulae A
and B are logically equivalent, written as A =B, if
both A= B and B=A hold.

Figure 2 shows inferences rules for linear se-
quents which should be read not top-down but
bottom-up. The system explains the meaning of
logical connectives with left rules and right rules.
A left rule specifies how to exploit an existing
formula involving a particular connective. For
example, the left rule for ®, namely the rule ®L,
decides to exploit an existing formula A ® B and
splits it into A and B; hence the problem of
proving A A ® B=(C reduces to the problem of
proving A, A, B= C. A right rule specifies how to
produce a new formula involving a particular
connective. For example, the right rule for ®,
namely the rule ®R, decides to produce a new
formula A ® B by attempting to produce A from A
and B from A’; hence the problem of proving 4, A’
=A ® B reduces to the problem of proving A=A
and A’= B. The rule Init has no premise because
consuming A immediately produces A; it has an
implication that a linear sequent must consume all
resources in its linear context. Note that there is
no left rule for T.

Now it is easy to show that 1 is the identity for
®, ie, 18A=A®1=A, and that T is the
identity for &, ie, T&A=A& T =A. Both &
and ® are associative and

FAAMA=SC

LAA=C i
A;A=C

=4
TAASC ‘R

r-=14"

Copy

Fig. 3 Inference rules for the modality !

commutative, and — is right associative.
3.2 Linear logic with unrestricted hypotheses

Linear “of course”

logic also provides the
modality ! which allows a resource to be consumed
in an unrestricted way. A formula !A denotes an
infinite supply of resource A which we may use
any number of times, including zero times:
A = |14

In order to incorporate the modality !, we follow

formula

the style in [9] and use an extended linear sequent
I'; A=A where an unrestricted context ' is a set
of formulae:

- | AT

I'; A=A means that we have to produce a new

unrestricted context [' ==

resource A by consuming every resource in A4
exactly once but any resource in I' as many times
as necessary, Le., in an unrestricted way. A linear
sequent A=A is now an abbreviation of - ;A= A.

The rules for extended linear sequents are
derived from the previous rules in Figure 2 by
rewriting every linear sequent A=A as I';A=A.
In addition, we need three new rules in Figure 3.
The rule Copy enables us to use resources in
unrestricted contexts. The left rule ! L decides to
exploit an existing formula ! A by incorporating A
into the unrestricted context. The premise of the
right rule ! B proves that A is a resource that can
be produced any number of times because it does

not require additional resources except those in I,

4. Semantics based on linear logic

This section presents our semantics for uncertain
databases. We define the semantic function F in
such a way that the following invariant holds:

« F()=F(R) if and only if U= R.

Since F(U)=> F(R) proves F(U) — F(R) and vice
versa, ‘logical implication’ in our semantics is in
fact ‘linear implication.” Then F satisfies the requ-
irement given in Section 2.3.

4.1 Definition of the semantic function F

Informally our semantics interprets x-tuples as
descriptions of resources in the following way.

1O 0T

Note that once a

* Consuming a disjunctive tuple
produces one of Ti,, Th
new tuple is produced, the original disjunctive
tuple disappears.

* Consuming a maybe tuple Z? produces either
Z or nothing. Similarly to disjunctive tuples,
the original maybe tuple disappears when either
Z or nothing is produced.

* Separate x-tuples represent independent resour-
ces. That is, consuming an x-tuple does not
affect other x-tuples.

* An ordinary tuple 7, which is a special case of
an x-tuple, represents a resource that permits
an unrestricted use. Hence T does not disap-
pear even after it is consumed. Intuitively T
contains no element of uncertainty and thus
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denotes a persistent fact.

This resource interpretation of x~-tuples exhibits a
pleasant correspondence with logical connectives in
linear logic.

*Consuming an x-tuple X to produce another

x-tuple X’ is encoded as a linear implication X~ X".

* A disjunctive tuple 71 ©® - ® T, is encoded as an

alternative conjunction 71 & - & 7.

* A maybe tuple Z? is encoded as an alternative

conjunction Z & 1 where 1 means ‘nothing.’

* A set of x-tuples X; through X, is encoded as a

simultaneous conjunction X1 ® - @ X, .

* An ordinary tuple 7 is encoded as ! T where 7 is

assumed to have the form of a predicate.

Then an wuncertain database consisting of
x-tuples Xi, ', Xn corresponds to a simultaneous
conjunction X; ® -~ ® X, and instantiating an
uncertain database U to a relational database R
corresponds to a linear implication U — R.

Formally the semantic function F uses ®, &, 1

and ! in linear logic:

FP(E) = 1P
FZ®z) = FX&FZ)
FZ) =  F2&l

F)y = 1
FX,U) = FX®FRU

The definition of F is based on the following

observations:

* A tuple P(;) itself contains no element of un-
certainty and thus denotes a persistent fact. For
example, we may not use Eat(Tom,Pizza) ©®
Eat(Tom, Soup) twice to obtain both Eat(Tom,
Pizza) and Eat(Tom, Soup), but once we decide
to choose Eat(Tom, Pizza), it becomes a persistent
fact which may be used any number of times

afterwards. Hence we translate P(;) to !P(;).

* A disjunctive tuple Z ® Z’ allows us to choose
either Z or Z’. Hence we translate it to F(Z) &
F(Z).

* A maybe tuple Z ? states that Z may or may not
be the case. If Z is not the case, we choose to
ignore it, obtaining no information, instead of
refuting it with logical negation. Hence we can
choose to produce Z or nothing from Z?, and
translate Z? to F(Z) &1.

2 2
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*An empty uncertain database gives no infor-
mation. Hence we translate it to 1.

« Given an uncertain database consisting of X and
U, we may use X and U independently of each
other. Hence we translate X, U to F(X) ® F(U),
which means that F is compositional.

4.2 Soundness and completeness of F

We now show that the invariant holds on the
semantic function F. We need to prove the sound-
ness and completeness of F in the following sense:

Theorem 4.1 (Soundness of F) If F(U)= F(R)
where the proof does not use the rules for the
modality ! given in Figure 3, then U< R.

Theorem 4.2 (Completeness of F) If U—R,
then F(U)= F(R).

The assumption on the proof of F(U)=F(R) in
Theorem 4.1 implies that we regard !P(;) as an
atomic formula and never decompose it to add P(Z)
to an unrestricted context. (Hence we do not need
extended linear sequents.) The rationale is that the
proof of F(U)= F(R) concerns itself only with the
relationship between U and R, and not with dedu-
cing new logical theories from U and E. Without
this assumption, the completeness of F fails. For
F(U)=F(-) holds
database U by repeatedly applying the rule !L

example, for any uncertain
while U< holds.only if U is empty or consists
of maybe tuples.

The completeness of F is easy to prove because
of the compositionality of F. The proof of the
soundness of F is also straightforward mainly be-
cause of the use of the sequent calculus in formu-
lating linear logic. Theorem 4.1 follows immediately
from Lemma 4.3.

Lemma 4.3 If F(U)=® ;_,! P(t,),
then U~ U?=1P(Z).

Proof. By induction on the size of U (not on its
structure). |

5. Related work

While logical accounts of uncertain databases
using attribute variables (null values in particular)
have been studied thoroughly (see [10] for a survey),
there is a distinct lack of research on logical
accounts of uncertain databases with maybe infor-
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mation, perhaps because of the difficulty of directly
mapping maybe information to logical formulae. The
only work that we are aware of is the semantics
proposed by Liu and Sunderraman [11] (and later
adopted by Zimanyi [12]) which

propositional logic. Their semantics circumvents the

is based on

problem of translating maybe tuples by generating a
first-order formula that amounts to declaring at
once all predicates present in a given uncertain
database. For example, the uncertain database U in
Section 2.1 generates the following first-order
formula which essentially states the completion
axiom in the formulation of Reiter [2]:

Vx. Vy, Eat(x, y) @ Eat(Tom, Pizza) V Eat(Tom,

Soup) V Eat(John, Salad) V Eat(Jane, Steak)

Since there is now a possibility that Eat(John,
Salad) is true, the semantics just ignores the
maybe tuple Eat(John, Salad)?.

Unlike our semantics, the semantics of Liu and
Sunderraman requires Z in Z? to be an ordinary
tuple. If Z is allowed to be a disjunctive tuple, the
semantics may translate operationally different un-
certain databases to the same logical formulae. For
example, the following uncertain databases U, and
Uz are translated identically even though they are
operationally different:

Ui = (Eat(Tom, Pizza) ® Eqgt(Tom, Soup))?
Us = Eat(Tom, Pizza)? ® Eat(Tom, Soup)?

Another difference is that their semantics is not
compositional: the translation of an uncertain data-
base Ui, Uz is not a direct sum of the individual
translations of U; and Us. In summary, our seman-
tics is more general and compositional, yet consi-
derably simpler, thanks to the use of linear logic as
its logical foundation.

6. Conclusion

We have studied a formal semantics of uncertain
databases. We take a logical approach of translat-
ing uncertain databases to logical formulae. Our
semantics distinguishes itself from prior efforts by
using linear logic as its logical foundation. We
show that our semantics is faithful to the opera-

tional of uncertain databases in the

account
algebraic approach.

As future work, we plan to investigate a logical

interpretation of operations on uncertain databases.
For example, we could define a semantic function
from database operators to logical formulae so that
the problem of testing the correctness of database
operations reduces to checking the relation between
logical formulae. In conjunction with the semantic
function F for uncertain databases, such a semantic
function will make the logical account of uncertain
databases not only theoretically interesting but also
practically important.
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