• 제목/요약/키워드: 불균형 학습

검색결과 194건 처리시간 0.033초

7차 수학과 고등학교 교육 과정의 의미 및 입시와 관련된 개선 방향 (A Meaning of 7-th Curriculum in High School Mathematics and Improvement Direction in Relation to Entrance Examinations)

  • 김화준
    • 한국수학사학회지
    • /
    • 제17권2호
    • /
    • pp.53-60
    • /
    • 2004
  • 이 연구는 7차 수학과 고등학교 교육 과정의 의미 및 대학 입시와 관련된 개선방향에 대하여 다루었다. 결과는 다음과 같다. 7차 수학과 고등학교 교육 과정의 의미는 수준별ㆍ선택 중심적 교과 과정이 새로이 도입된 것이고, 개선해야 할 점은 문ㆍ이과 사이의 학습 분량의 불균형이다. 이것은 대학 입시 출제 범위와 관련하여 해결해야 한다.

  • PDF

심혈관질환 위험 예측을 위한 비용민감 학습 모델 (Cost-Sensitive Learning for Cardio-Cerebrovascular Disease Risk Prediction)

  • 이유나;이경희;조완섭
    • 한국빅데이터학회지
    • /
    • 제6권2호
    • /
    • pp.161-168
    • /
    • 2021
  • 본 연구에서는 기계 학습을 사용하여 심혈관 질환 예측 모델을 제안한다. 먼저 두 집단간에 다양한 차이를 다차원분석하고 그 결과를 시각화한다. 특히, 질환과 같이 정상집단과 환자집단 간에 높은 클래스 불균형이 존재하는 경우에 대하여 민감도를 향상시킬 수 있는 비용 민감 학습을 사용하는 예측 모델을 제안한다. 본 연구에서는 대표적인 머신러닝 기술인 CART와 XGBoost를 사용하여 예측모델을 개발하고, 심혈관 질환 환자 데이터를 대상으로 예측하고 성능을 비교한다. 연구결과에 따르면 CART가 XGBoost 보다 더 높은 정확도와 특이도를 보였으며, 정확도는 약 70%~74%로 나타났다.

합성곱 AutoEncoder를 이용한 공기조화기 이상 감지와 실시간 모니터링 (Air conditioner anomaly detection and real-time monitoring using Convolution AutoEncoder)

  • 이세훈;김민지;임유진;조비건
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.5-6
    • /
    • 2021
  • 본 논문에서는 Semi-supervised Learning 방식의 이상감지 방법을 제안한다. 취득한 소음 데이터를 이미지화 시킨 후 Convolution AutoEncoder 학습 방법을 이용하여 모델을 학습한다. 고장 데이터와 정상 데이터 간의 데이터 불균형 문제가 대두되기 때문에 정상 데이터만을 활용한 이상감지는 실제 산업현장의 상황에 알맞게 사용할 수 있을 것이라 기대한다.

  • PDF

그래프 임베딩 기반의 이더리움 피싱 스캠 탐지 연구 (Ethereum Phishing Scam Detection Based on Graph Embedding)

  • 정유영;김경태;임동혁
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.266-268
    • /
    • 2022
  • 최근 블록체인 기술이 부상하면서 이를 이용한 암호화폐가 범죄의 대상이 되고 있다. 특히 피싱 스캠은 이더리움 사이버 범죄의 과반수 이상을 차지하며 주요 보안 위협원으로 여겨지고 있다. 따라서 효과적인 피싱 스캠 탐지 방법이 시급하다. 그러나 전체 노드에서 라벨링된 피싱 주소의 부족으로 인한 데이터 불균형으로 인하여 지도학습에 충분한 데이터 제공이 어려운 상황이다. 이를 해결하기 위해 본 논문에서는 이더리움 트랜잭션 네트워크를 고려한 효율적인 네트워크 임베딩 기법인 trans2vec 과 준지도 학습 모델 tri-training 을 함께 사용하여 라벨링된 데이터뿐만 아니라 라벨링되지 않은 데이터도 최대한 활용하는 피싱 스캠 탐지 방법을 제안한다.

불균형 데이터세트 학습에서 정확도 균일화를 위한 학습 방법에 관한 연구 (A Study of a Method for Maintaining Accuracy Uniformity When Using Long-tailed Dataset)

  • 박근표;박흠우;김종국
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.585-587
    • /
    • 2023
  • Long-tailed datasets have an imbalanced distribution because they consist of a different number of data samples for each class. However, there are problems of the performance degradation in tail-classes and class-accuracy imbalance for all classes. To address these problems, this paper suggests a learning method for training of long-tailed dataset. The proposed method uses and combines two methods; one is a resampling method to generate a uniform mini-batch to prevent the performance degradation in tail-classes, and the other is a reweighting method to address the accuracy imbalance problem. The purpose of our proposed method is to train the learning models to have uniform accuracy for each class in a long-tailed dataset.

표현 학습 기반의 딥러닝 모델을 활용한 클라우드 자원 이상 감지 시스템 (Anomaly Detection System for Cloud Resources Using Representation Learning-Based Deep Learning Models)

  • 이민영;유헌창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.658-661
    • /
    • 2024
  • 퍼블릭 클라우드 시장이 성장하면서 퍼블릭 클라우드에서 호스팅하는 컴퓨팅 자원으로 구축된 거대하고 복잡한 IT 시스템이 점차 많아지고 있다. 이러한 시스템의 증가는 서비스 장애 발생 확률을 높이므로, 장애 관리 및 선제 감지를 위한 퍼블릭 클라우드 자원의 이상 감지 연구에 대한 수요 또한 증가하고 있다. 그러나 연구에 활용할 수 있는 벤치마크 데이터셋이 없다는 점과, 실제 자원에서 추출할 수 있는 데이터는 레이블링이 되어 있지 않은 불균형 데이터라는 점 때문에 관련 연구가 부족한 상황이다. 이러한 문제를 해결하고자 본 논문은 비지도 방식의 표현 학습 기반 딥러닝 모델을 활용한 이상 감지 시스템을 제안한다. 시스템의 이상 감지 성능을 유지하고자 일정 주기마다 다수의 딥러닝 모델을 재학습하고 비교하여 최적의 모델로 업데이트 하는 방식을 고안하였다. 해당 시스템의 평가에는 실제 퍼블릭 클라우드 자원에서 발생한 메트릭 데이터가 활용됐으며, 그 결과 준수한 이상 감지 성능을 보인다는 것을 확인하였다.

손실 영역 분석 기반의 학습데이터 매핑 기법을 이용한 초해상도 연구 (Super Resolution using Dictionary Data Mapping Method based on Loss Area Analysis)

  • 한현호;이상훈
    • 한국융합학회논문지
    • /
    • 제11권3호
    • /
    • pp.19-26
    • /
    • 2020
  • 본 논문에서는 학습된 사전 기반 초해상도 결과를 개선하기 위해 분석한 손실 영역을 기반으로 학습 데이터를 적용하는 방법을 제안하였다. 기존의 학습된 사전 기반 방법은 입력 영상의 특징을 고려하지 않는 학습된 영상의 형태로 출력할 수 있으며, 이 과정에서 인공물이 발생할 수 있다. 제안하는 방법은 입력 영상과 학습된 영상의 일치하지 않는 특징으로 인한 인공물 발생을 줄이기 위해 1차 복원 결과를 분석함으로써 손실 정보를 추정하였다. 추정된 결과의 잡음 및 화소 불균형을 가우시안 기반의 커널로 개선하여 생성된 특징 맵에 따라 학습 데이터를 매핑하였다. 결과 비교를 위해 기존의 초해상도 방법과 제안 방법의 결과를 고화질 영상과 PSNR(Peak Signal to Noise Ratio), SSIM(Structural SIMilarity Index) 으로 비교한 결과 각각 4%와 3%의 향상된 결과를 확인하였다.

앙상블 학습의 부스팅 방법을 이용한 악의적인 내부자 탐지 기법 (Malicious Insider Detection Using Boosting Ensemble Methods)

  • 박수연
    • 정보보호학회논문지
    • /
    • 제32권2호
    • /
    • pp.267-277
    • /
    • 2022
  • 최근 클라우드 및 원격 근무 환경의 비중이 증가함에 따라 다양한 정보보안 사고들이 발생하고 있다. 조직의 내부자가 원격 접속으로 기밀 자료에 접근하여 유출을 시도하는 사례가 발생하는 등 내부자 위협이 주요 이슈로 떠오르게 되었다. 이에 따라 내부자 위협을 탐지하기 위해 기계학습 기반의 방법들이 제안되고 있다. 하지만, 기존의 내부자 위협을 탐지하는 기계학습 기반의 방법들은 편향 및 분산 문제와 같이 예측 정확도와 관련된 중요한 요소를 고려하지 않았으며 이에 따라 제한된 성능을 보인다는 한계가 있다. 본 논문에서는 편향 및 분산을 고려하는 부스팅 유형의 앙상블 학습 알고리즘들을 사용하여 악의적인 내부자 탐지 성능을 확인하고 이에 대한 면밀한 분석을 수행하며, 데이터셋의 불균형까지도 고려하여 최종 결과를 판단한다. 앙상블 학습을 이용한 실험을 통해 기존의 단일 학습 모델에 기반한 방법에서 나아가, 편향-분산 트레이드오프를 함께 고려하며 유사하거나 보다 높은 정확도를 달성함을 보인다. 실험 결과에 따르면 배깅과 부스팅 방법을 사용한 앙상블 학습은 98% 이상의 정확도를 보였고, 이는 사용된 단일 학습 모델의 평균 정확도와 비교하면 악의적인 내부자 탐지 성능을 5.62% 향상시킨다.

Multi-scale face detector using anchor free method

  • Lee, Dong-Ryeol;Kim, Yoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권7호
    • /
    • pp.47-55
    • /
    • 2020
  • 본 논문에서는 앵커 프리 방법을 이용한 FCN(Fully Convolutional Network)기반의 1단계 다중 크기 얼굴 검출기를 제안한다. 최근 대부분의 연구들은 사전 정의된 앵커를 사용하여 얼굴이 있을 만한 위치를 예측한다. 그러나 사전 정의 앵커를 이용함으로써 학습 시 하이퍼 파라미터의 설정과 추가적인 계산이 필요하다. 제안하는 방법의 핵심 아이디어는 앵커 프리 방법을 사용하여 하이퍼 파라미터를 없애고 여러 개의 특징 맵을 사용함으로써 클래스 내 불균형 문제를 완화하는 것이다. 이 방법들은 다음과 같은 효과가 있다. 첫째로 사전정의 앵커를 없앰으로써 앵커와 관련된 하이퍼 파라미터와 추가적인 계산을 피한다. 둘째로 클래스 내 불균형을 완화하기 위해 여러개의 특징 맵으로부터 얼굴을 예측한다. 정량적 평가를 통해 제안하는 방법에 따른 검출 성능을 평가 및 분석한다. FDDB(Face Detection Dataset & Benchmark) 데이터 셋의 실험 결과에서 제안하는 방법이 효과가 있음을 증명했다.

랜덤포레스트를 이용한 국내 학술지 논문의 자동분류에 관한 연구 (An Analytical Study on Automatic Classification of Domestic Journal articles Using Random Forest)

  • 김판준
    • 정보관리학회지
    • /
    • 제36권2호
    • /
    • pp.57-77
    • /
    • 2019
  • 대표적인 앙상블 기법으로서 랜덤포레스트(RF)를 문헌정보학 분야의 학술지 논문에 대한 자동분류에 적용하였다. 특히, 국내 학술지 논문에 주제 범주를 자동 할당하는 분류 성능 측면에서 트리 수, 자질선정, 학습집합 크기 등 주요 요소들에 대한 다각적인 실험을 수행하였다. 이를 통해, 실제 환경의 불균형 데이터세트(imbalanced dataset)에 대하여 랜덤포레스트(RF)의 성능을 최적화할 수 있는 방안을 모색하였다. 결과적으로 국내 학술지 논문의 자동분류에서 랜덤포레스트(RF)는 트리 수 구간 100~1000(C)과 카이제곱통계량(CHI)으로 선정한 소규모의 자질집합(10%), 대부분의 학습집합(9~10년)을 사용하는 경우에 가장 좋은 분류 성능을 기대할 수 있는 것으로 나타났다.