• Title/Summary/Keyword: 불규칙 외란

Search Result 18, Processing Time 0.028 seconds

Vibration Control of Flexible Dynamic System Exposed to Unknown Random Disturbance and Identification of the Random Disturbance (미지의 불규칙 외란에 노출된 유연 계의 진동제어 및 불규칙 외란의 규명)

  • 정근용;오용설;민성준;오경석;허훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.228-232
    • /
    • 2004
  • This paper is to identify the position of random disturbance on flexible dynamic system, and the position of the piezo ceramic actuator 0 minimize tip response. Correlation of the output signals from each parts on flexible system is used to identify the position of random disturbance. Except the correlation with an output signal from the position of random disturbance, other correlations have time delay. This is a base idea to identify the position on this study.

  • PDF

System Identification in Stochastic Domain using Output only (확률영역에서 시스템 출력만을 이용한 시스템 규명)

  • Park, Seok-Man;Yeo, Un-Gyeong;Lee, Dong-Hui;Chae, Gyo-Sun;Heo, Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.706-709
    • /
    • 2007
  • 일반적으로 알려진 시스템 규명은 시스템의 입/출력 관계를 이용하여 시스템을 규명하고 그 파라미터를 구하고 있다. 그러나 많은 경우에 시스템이 불규칙한 외란에 노출된 경우에는 알려져 있는 시스템의 규명방법이 없다. 이에 그 특성이 알려져 있지 않은 미지의 시스템이 미지의 불규칙한 외란에 노출되었을 때에 그 시스템을 규명하는 방법을 연구 개발하였다. 여기서는 시스템의 출력이 정상적(Stationary)일 때만 이를 확률영역에서 고려하였다. 확률 영역에서 시스템의 응답은 시스템 파라미터의 영향을 크게 받는바 시스템모멘트응답을 시스템 파라미터와의 관계로 구성할 수 있다. 이로부터 시스템의 출력만을 이용하여 시스템 파라미터의 규명이 가능하게 되었다. 본 연구에서는 실 물리영역에서의 출력을 확률영역에서의 모멘트 응답으로 변환시킨 후 역변환 개념으로 미지의 불규칙 외란에 노출되어진 미지의 2차 선형 확률시스템의 파라메타를 성공적으로 규명하였다.

  • PDF

Flutter Control of Flexible Structure under Random Atmospheric Disturbance (불규칙한 대기교란을 받는 유연한 구조물의 플러터 제어)

  • Oh, Soo-Young;Kim, Yong-Kwan;Cho, Kyoung-Lae;Heo, Hoon;Cho, Yun-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1210-1215
    • /
    • 2000
  • Investigation is performed on the stability of general form of dynamic system under colored noise random disturbance whose damping and stiffness are varying in irregular manner along time, which is a preliminary result in the course of research on the characteristic and the control of the stochastic system. Adopted physical model is airfoil under random atmospheric disturbance, which becomes a "time-varying system" whose the governing equation is derived via F-P-K approach in stochastic sense. Control performance and effect of 'Heo-stochastic controller for colored noise' is studied. Also stochastic feature of flutter boundary is discussed as well.

  • PDF

Active Stabilization for Surge Motion of Moored Vessel in Irregular Head Waves (불규칙 선수파랑 중 계류된 선박의 전후동요 제어)

  • Lee, Sang-Do;Truong, Ngoc Cuong;Xu, Xiao;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.437-444
    • /
    • 2020
  • This study was focused on the stabilization of surge motions of a moored vessel under irregular head seas. A two-point moored vessel shows strong non-linearity even in regular sea, owing to its inherent non-linear restoring force. A long-crested irregular wave is subjected to the vessel system, resulting in more complex nonlinear behavior of the displacement and velocities than in the case of regular waves. Sliding mode control (SMC) is implemented in the moored vessel to control both surge displacement and surge velocity. The SMC can provide a closed-loop system with performance and robustness against parameter uncertainties and disturbances; however, chattering is the main drawback for implementing SMC. The goal of minimizing the chattering and state convergence with accuracy is achieved using a quasi-sliding mode that approximates the discontinuous function via a continuous sigmoid function. Numerical simulations were conducted to validate the effectiveness of the proposed control algorithm.

[ " ]Mode Selecting Fuzzy Controller" to suppress the response of flexible system under irregular disturbance (불규칙 외란을 받는 유연한 계에 대한 "모드선택 퍼지제어")

  • Yoon, Y.S.;Kim, Y.K.;Ko, K.W.;Yeo, W.J.;Heo, H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.198-203
    • /
    • 2002
  • A fuzzy logic controller design technique is proposed to apply for the control of flexible system under irregular disturbance. The fuzzy rules of $\ulcorner$Mode Selecting Fuzzy Controller$\lrcorner$ are constructed using displacement, velocity information and modal characteristics of the system. The frequency information of flexible system is picked up from $\ulcorner$Mode Selecting Unit$\lrcorner$ based on Fast-Fourier transform algorithm. Experiment is conducted to verify the proposed theoretical approach, Piezo ceramic and laser accelerometer are used as actuator and sensor in the experiments respectively

  • PDF

"Mode Selecting Fuzzy Controller" to suppress the response of flexible system under irregular disturbance (불규칙 외란을 받는 유연한 계에 대한 "모드선택 퍼지제어")

  • Yoon, Young-Soo;Kim, Yong-Kwan;Ko, Kwang-Won;Yeo, Woon-Joo;Hoon Heo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.326.1-326
    • /
    • 2002
  • A fuzzy logic controller design technique is proposed to apply to the control of flexible system under irregular disturbance. The fuzzy rules of $\ulcorner$Mode Selecting Fuzzy Controller$\lrcorner$ are constructed using displacement, velocity information and modal characteristics of the system. The frequency information of flexible system is picked up from $\ulcorner$Mode Selecting Unit$\lrcorner$ based on Fast-Fourier transform algorithm. Experiment is conducted to verify the proposed theoretical approach. (omitted)

  • PDF

Vibration Control of Vehicle using Road Profile Information (외란 형상 정보를 활용한 진동제어)

  • Kim, Hyo-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.431-437
    • /
    • 2017
  • In this study, based on the RPS algorithm, the application results to an electrically controlled suspension system using previewed road information are presented. Reducing the excessive vibration induced by a disturbance transmitted to the system and secure its stability is a major issue. In particular, in the automotive industry, the demand is constantly being raised. A typical external disturbance causing vibration and instability of a vehicle is an irregular roadway surface that contacts a running vehicle tire. Therefore, obtaining such profile information is an important process. The RPS algorithm using a multi sensor system was constructed and implemented in a real car. Through experimental work using the RPS system included non-contact type optical sensors, it could robustly reconstruct the road input profiles from the intermixed data onto the vehicle's dynamic motion while traveling at an uneven roadway surface. A controller with a preview control was designed in the framework of a semi-active suspension system based on the 7 degrees of freedom full vehicle model. The control performance of the system was evaluated through simulations and the results were compared with the passive vehicle condition. These results highlight the feasibility of the presented control frame.

Position-Speed Estimator using Kalman Filter with Parameter Identification (기계적인 시정수의 동정을 가지는 Kalman 필터를 사용한 위치-속도 추정자)

  • Shin, Ki-Sang;Lee, Je-Hie;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.434-436
    • /
    • 1997
  • 본 연구에서는 저속에서 발생하는 측정잡음에 대한 문제를 불규칙 확률시스템으로 고려하여 Kalman 필터를 관측자로서 사용하고 고속에서뿐만 아니라 저속에서의 위치와 속도 추정성능을 향상시키고자 한다. Kalman 필터는 확률적 외란을 포함하고 있는 동적시스템에 적용되는 최적상태 추정자이다. 또한 이 Kalman 필터는 외란을 가지는 이산형 실시간 동적 처리 시스템에서 최적의 미지 상태를 추정하기 위해 선형, 불편향, 그리고 최소 오차분산 회귀형 알고리즘을 제공한다. 또한, MRAS(Model Reference Adaptive System) 방법을 이용하여 모터와 부하에 대응되는 기계적 시정수를 동정한다. 이 방법은 기계적인 시정수가 알려지지 않은 시스템에 적용하여 위치와 속도의 추정을 가능하게 하기 위해서이다. 더욱이 동정의 결과를 이용하여 Kalman 필터 알고리즘에 적용한다.

  • PDF

On a Performance Index of Automatic Steering System of Ships (선박 자동조타 시스템의 성능평가지수에 관한 고찰)

  • Kyoung-Ho Sohn;Gyoung-Woo Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.27-37
    • /
    • 1995
  • A performance index is very important and indispensable to the evaluation of automatic steering system of ships in open sea from the viewpoint of energy saving. In this paper, we derive the performance index of automatic steering system from the concept of energy loss of propulsive power. The index is found to consist of three terms, energy loss due to elongation of sailing distance, energy loss due to steering, and energy loss due to yawing motion. We also provide two kinds of calculation method on the performance index ; frequency response analysis and digital simulation. The numerical calculations are carried out for an ore carrier and a fishing boat by both methods. The frequency response analysis is found to be useful if the system is linear and the disturbance on ship is not large. If the system is nonlinear or the disturbance is excessive, the method of digital simulation has to be applied for the accurate evaluation of the performance index. Further investigations into the effects of nonlinear elements such as weather adjuster, power unit etc. on the performance index, will be dealt with in another paper.

  • PDF

A Study of Realizing Technique for Stochastic Controller (확률제어기의 실시간 적용을 위한 연구)

  • Kim, Y. K.;Lee, J. B.;Yoon, Y. S.;Choi, W. S.;Heo, H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.215-218
    • /
    • 2002
  • A control strategy for a dynamic system under irregular disturbance by using stochastic controller is developed. In order to design stochastic controller, system dynamic model in real domain i transformed dynamic moment equation in stochastic domain by F-P-K approach. A study of real time control technique four stochastic controller is performed in this paper.

  • PDF