• Title/Summary/Keyword: 분해촉매

Search Result 944, Processing Time 0.029 seconds

Bio-oil Production from Rice Straw by the Catalytic Pyrolysis over Zeolites (제올라이트 촉매 열분해를 이용한 볏짚으로부터 바이오 오일 생산)

  • Choi, Jong Cheol;Ryu, Ji Hye;Kang, Bo-Sung;Kim, Joo-Sik;Jeon, Jong-Ki;Park, Young-Kwon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.382-386
    • /
    • 2006
  • Rice straw is one of the main renewable energy sources in Korea. Bio-oil is produced from rice straw with a bench-scale equipment mainly with a fluidized bed, a char removal system and zeolite catalyst. It was investigated how the zeolite catalyst affected the production of bio-oil and chemical composition of bio-oil. Compared with non catalytic pyrolysis, the catalytic pyrolysis increased the amount of gas and char but decreased the amount of oil. The water content in bio-oil increased due to deoxygenation. The aromatic compound and heating value was increased when catalytic pyrolysis was applied.u

A Study on Multi-Stage Catalytic Ignitor for Hybrid Rocket Auto Ignition (하이브리드 로켓 자동점화를 위한 다단촉매점화기에 관한 연구)

  • Choi, Woojoo;Kim, Jincheol;Kwon, Minchan;Yoo, Yeongjun;Kim, Taegyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.117-119
    • /
    • 2017
  • The multi-stage catalytic igniter for hybrid rocket auto ignition is described in this paper. After charging the catalyst and pre-heating the first stage, the $N_2O$ was supplied at the first stage with the low mass flow rate, and then the $N_2O$ with the high flow rate was supplied into the second stage. Even though the $N_2O$ flow rate was high, it was decomposed by supplying the high temperature gas which was evolved from the $N_2O$ decomposition in the first stage. This multi-stage ignitor resulted in the decrease of the ignition time in comparison with the previous ignitor, and confirmed the possibility of $N_2O$ decomposition with the high flow rate using the multi-stage catalytic-ignition system.

  • PDF

Recent Research Trends of Exploring Catalysts for Ammonia Synthesis and Decomposition (암모니아 합성 및 분해를 위한 촉매 탐색의 최근 연구 동향)

  • Jong Yeong Kim;Byung Chul Yeo
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.487-495
    • /
    • 2023
  • Ammonia is either a crucial resource of fertilizer production for solving the food problem of mankind or an important energy source as both an eco-friendly hydrogen carrier and a carbon-free fuel. Therefore, nowadays ammonia synthesis and decomposition become promising. Then, a catalyst is required to effectively perform the ammonia synthesis and decomposition. In order to design high-performing as well as cheap novel catalysts for ammonia synthesis and decomposition, it is necessary to test huge amount of catalyst candidates, but it is inevitably time-consuming and expensive to search and analyze using only traditional approaches. Recently, new methods using machine learning which is one of the core technologies of the 4th industrial revolution that can quickly and accurately search high-performance catalysts has been emerging. In this paper, we investigate reaction mechanisms of ammonia synthesis and decomposition, and we described recent research and prospects of machine learning-driven methods that can efficiently find high-performing and economical catalysts for ammonia synthesis and decomposition.

Catalytic Decomposition of SF6 by Hydrolysis over γ - Al2O3 Supported Metal Oxide Catalysts (금속산화물이 담지된 γ - Al2O3 촉매상에서 가수분해에 의한 SF6의 촉매분해)

  • Park, Hyeon-Gyu;Park, No-Kuk;Lee, Tae-Jin;Chang, Won-Chul;Kwon, Won-Tae
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.83-88
    • /
    • 2012
  • In order to improve the stability of ${\gamma}-Al_2O_3$ on hydrolysis of $SF_6$, the catalytic promoters were investigated in this study. The crystal phase of ${\gamma}-Al_2O_3$ is transformed to their ${\alpha}$-phase during hydrolysis of $SF_6$. Various metal oxides were applied as the promoter material that is Ga, Mg, and Zn and the promoter of 1, 5, and 10 wt% was impregnated over ${\gamma}-Al_2O_3$ by the impregnation method. Specially, it were confirmed in the catalytic activity tests and XRD analysis that ZnO/${\gamma}-Al_2O_3$ catalyst had the high activity for decomposition of $SF_6$ by catalytic hydrolysis and the crystal phase of ZnO promoted ${\gamma}-Al_2O_3$ was not transformed. From these results, it could be known that the stability of ${\gamma}-Al_2O_3$ is enhanced with the catalytic promotion of ZnO impregnated over the surface of catalyst.

1,4-Dioxane Decomposition by Catalytic Wet Peroxide Oxidation using Cu Wire Catalysts (Cu wire 촉매를 이용한 촉매습식과산화공정에 의한 1,4-다이옥산의 분해)

  • Lee, Dong-Keun;Kim, Dul Sun
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.281-285
    • /
    • 2016
  • Cu wire catalyst was highly reactive toward catalytic wet peroxide oxidation of the highly refractory 1,4-dioxane. While complete removal of 1,4-dioxane could be achieved with the catalyst, the removed 1,4-dioxane could not totally mineralized into $CO_2$ and $H_2O$. In accordance with the disappearance of 1,4-dioxane, formaldehyde and oxalic acid were formed gradually with reaction time and they went through maxima. At around the time of maximum concentrations of these two intermediates acetaldehyde concentration was increased drastically and showed maximum value. With the disappearance of these three intermediates, formic acid together with ethylene glycol diformate began to increase gradually. The Cu wire catalyst was proved also to be highly stable against deactivation during the reaction.

Activity Comparison According to Prepared Method of Cu-Mn Oxide Catalyst for Toluene Combustion (톨루엔 분해를 위한 구리-망간 산화물 촉매의 제조방법에 따른 활성 비교)

  • Kim, Hye-Jin;Choi, Sung-Woo;Lee, Chang-Seop
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.249-256
    • /
    • 2006
  • Catalytic combustion of toluene was investigated on the Cu-Mn oxide catalysts prepared by the impregnation(Imp) and the deposition-precipitation(DP) methods. The mixing of copper and manganese has been found to enhance the activity of catalysts. It is then found that catalytic efficiency of the Cu-Mn oxide catalyst prepared by the DP method on combustion of toluene is much higher than that of the Cu-Mn oxide catalyst prepared by Imp method with the same chemical composition. The catalyst prepared by the deposition-precipitation method observed no change of toluene conversion at time on stream during 10 days and at the addition of water vapor. On the basis of catalyst characterization data, it has been suggested that the catalysts prepared by the DP method showed uniform distribution and smaller particle size on the surface of catalyst and then enhanced reduction capability of catalysts. Therefore, we think that the DP method leads on progressive capacity of catalyst and promotes stability of catalyst. It was also presumed that catalytic conversion of toluene on the Cu-Mn oxide catalyst depends on redox reaction and $Cu_{1.5}Mn_{1.5}O_4$ spinel phase acts as the major active sites of catalyst.

The Study on Characteristics of Polystyrene by Low Temperature Pyrolysis by using Co and Mo Dispersed Catalysts (Co 및 Mo 기반 촉매에 의한 폴리스티렌의 저온 열분해 특성에 관한 연구)

  • Park, Jun-Gyu;Kim, Jae-Kon;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.676-685
    • /
    • 2016
  • This study investigated the conversion of oil products from polystyrene by using dispersed Co and Mo catalyst on reaction time and concentration change for knowledging on characteristics at low temperature (425, 450 and $475^{\circ}C$) pyrolysis and reaction time(20~80 min, 15 min interval) in a batch reactor. It will be showed the conditions for optimum pyrolysis at reaction temperature $450^{\circ}C$ and the reaction time 35min, and the main components of the converted liquid oil were styrene and benzene derivatives by GC/MS. The oil products formed during pyrolysis were classified into gas, gasoline, kero, diesel and heavy oil according to the domestic specification of petroleum products. The pyrolysis conversion rate was showed as Co catalyst > Mo catalyst > Thermal in all reaction time at reaction temperature $450^{\circ}C$. The yields rate of gas, kerosine, diesel were the most hight at Mo Catalyst, gasoline was at thermal and heavy oil was at Co catalyst. The conversion rate and yields of the pyrolysis products were the most height when Co catalyst ratio was 100%.

Development of Long-Life Performance Test Equipment & Evaluation Plan for Hydrazine Decomposition Catalyst (액체추진제 분해촉매 장기성능시험장치 개발 및 평가방안)

  • Kim, In-Tae;Kim, Jung-Hun;Lee, Jae-Won;Jang, Ki-Won;Yu, Myoung-Jong;Kim, Su-Kyum;Lee, Kyun-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.407-412
    • /
    • 2006
  • Most of the monopropellant thrusters use catalyst for decomposing hydrazine. The thruster lifetime is determined mainly by catalyst lifetime, which can be investigated by firing tests. For the development of hydrazine decomposition catalyst, Hot-fire test to verify long-life performance of catalyst is required. This study describes the development of test equipment for long duration hot-firing and test/evaluation plan.

  • PDF

Development of Hydrazine Decomposition Catalyst for Monopropellant Thruster (단일추진제 추력기용 하이드라진 분해 촉매 개발)

  • Kim, Su-Kyum;Yu, Myoung-Jong;Lee, Kyun-Ho;Cho, Sung-June;Lee, Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.101-104
    • /
    • 2009
  • KARI have been started development process of hydrazine decomposition catalyst for monopropellant thsuter from 2004 in cooperation with Chonnam National University and Hanwha Corps. Through the various trial and error, a catalyst that satisfies all the properties for space propulsion system was developed in 2009 and then the life firing test and qualification firing test was completed. In this paper, we will describe the development process of catalyst, the physical/chemical properties of final product and brief test results.

  • PDF

Photomineralisation of Reactive Black 5 with ZnO using Solar and UV-A Light (태양광과 UV-A 빛 하에서 ZnO 을 이용한 Reactive Black 5의 광분해작용)

  • Amisha, S.;Selvam, K.;Sobana, N.;Swaminathan, M.
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.1
    • /
    • pp.66-72
    • /
    • 2008
  • The photocatalytic degradation of a textile diazo dye in aqueous solution has been investigated under Solar and UV-A light. The effect of various parameters such as concentration of dye, amount of catalyst and pH on the degradation of dye has been studied. Addition of hydrogen peroxide, ammonium persulphate and isopropanol strongly influences the degradation rate. Kinetic analysis of photodegradation reveals that the degradation follows approximately pseudo first order kinetics according to the Langmuir-Hinshelwood model. Carbon dioxide, nitrate and sulphate ions have been identified as mineralisation products. The photocatalyst ZnO was found to be more efficient in UV-A light than in Solar light.