• Title/Summary/Keyword: 분해반응

Search Result 3,806, Processing Time 0.039 seconds

Continuous Decomposition of Ammonia by a Multi Cell-Stacked Electrolyzer with a Self-pH Adjustment Function (자체 pH 조정 기능을 갖는 다단 전해조에 의한 암모니아의 연속식 분해)

  • Kim, Kwang-Wook;Kim, Young-Jun;Kim, In-Tae;Park, Geun-Il;Lee, Eil-Hee
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.352-359
    • /
    • 2005
  • This work has studied the changes of pH in both of anodic and cathodic chambers of a divided cell due to the electrolytic split of water during the ammonia decomposition to nitrogen, and has studied the continuous decomposition characteristics of ammonia in a multi-cell stacked electrolyzer. The electrolytic decomposition of ammonia was much affected by the change of pH of ammonia solution which was caused by the water split reactions. The water split reaction occurred at pH of less than 8 in the anodic chamber with producing proton ions, and occurred at pH of more than 11 in the cathodic chamber with producing hydroxyl ions. The pH of the anodic chamber using an anion exchange membrane was sustained to be higher than that using a cation exchange membrane, which resulted in the higher decomposition of ammonia in the anodic chamber. By using the electrolytic characteristics of the divided cell, a continuous electrolyzer with a self-pH adjustment function was newly devised, where a portion of the ammonia solution from a pHadjustment tank was circulated through the cathodic chambers of the electrolyzer. It enhanced the pH of the ammonia solution fed from the pH-adjustment tank into the anodic chambers of the electrolyzer, which caused a higher decomposition yield of ammonia. And then, based on the electrolyzer, a salt-free ammonia decomposition process was suggested. In that process, ammonia solution could be continuously decomposed into the environmentally-harmless nitrogen gas up to 83%, when chloride ion was added into the ammonia solution.

Decomposition of Carbon Dioxide Using Sr Ferrites with Various Compositions (다양한 조성의 Sr 페라이트를 이용한 CO2분해 반응 특성)

  • 신현창;최정철;정광덕;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.191-197
    • /
    • 2003
  • Sr ferrites with various compositions were applied to the decomposition of $CO_2$ to mitigate the greenhouse effect. In the reduction reaction of Sr ferrites up to 80$0^{\circ}C$, starting temperature was lower with increasing of Sr content in Sr ferrite. However, the reactivity was higher with decreasing Sr content. In the $CO_2$ decomposition reaction with reduced Sr ferrites, the amount of CO and C were depended on the ratio of Sr and Fe in Sr ferrite. With increasing Sr content. larger amount of C were deposited on the surface of ferrite. Therefore, in order to apply Sr ferrites for the decomposition of $CO_2$, it is necessary to control the ratio of Sr and Fe according to the conditions used.

Nucleophilic Displacement at Sulfur Center (VIII). Solvolysis of 1-and 2-Naphthalene Sulfonyl Chlorides in Ethanol-Water Mixture (황의 친핵성 치환반응 (제8보). 물-에탄올 혼합용매 속에서 1-및 2-염화나프탈렌 술포닐의 가용매 분해반응)

  • Uhm, Tae Seop;Lee, Ik Choon;Kim, Jae Rok
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.358-363
    • /
    • 1976
  • Kinetic studies on solvolytic reactions of 1-and 2-naphthalene sulfonyl chlorides in ethanol-water mixtures have been carried out by means of conductometry at several temperatures. The rate constant for 2-naphthyl compound was larger than that for 1-naphthyl compound. This was contrary to the prediction of MO theory and could be rationalized as due to the peri-hydrogen effect in the transition state for 1-naphthyl compound. Based on m values of Winstein plots and n values of Kivinen pacolots it was concluded that the solvolytic displacement of the two naphthalene sulfonyl chlorides in ethanol-water mixtures proceed via $S_N2$ process.

  • PDF

Catalytic Decomposition of $SF_6$ by Hydrolysis and Oxidation over ${\gamma}-Al_2O_3$ (${\gamma}-Al_2O_3$ 촉매상에서 가수분해와 산화반응에 의한 $SF_6$ 촉매분해 특성)

  • Lee, Sun-Hwa;Park, No-Kuk;Yoon, Suk-Hoon;Chang, Won-Chul;Lee, Tae-Jin
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.273-279
    • /
    • 2009
  • $SF_6$, which has a high global warming potential, can be decomposed to sulfur and fluorine compounds through hydrolysis by $H_2O$ or oxidation by $O_2$ over solid acid catalysts. In this study ${\gamma}-Al_2O_3$ was employed as the solid acid catalyst for the abatement of $SF_6$ and its catalytic activity was investigated with respect to the reaction temperature and the space velocity. The catalytic activity for $SF_6$ decomposition by the hydrolysis reached the maximum at and above 973 K with the space velocity of $20,000\;ml/g_{-cat}{\cdot}h$, exhibiting a conversion very close to 100%. When the space velocity was lower than $45,000\;ml/g_{-cat}{\cdot}h$, the conversion was maintained at the maximum value. On the other hand, the conversion of $SF_6$ by the oxidation was about 20% under the same conditions. The SEM and XRD analyses revealed that the ${\gamma}-Al_2O_3$ was transformed to ${\alpha}-Al_2O_3$ during the hydrolysis and to $AlF_3$ during the oxidation, respectively. The size of $AlF_3$ after the oxidation was over $20\;{\mu}m$, and its catalytic activity was low due to the low surface area. Therefore, it was concluded that the hydrolysis over ${\gamma}-Al_2O_3$ was much more favorable than the oxidation for the catalytic decomposition of $SF_6$.

Reductive Degradation of hexachloroethane by using Iron Minerals: Kinetics studies (철 광물에 의한 헥사클로에탄의 환원적 분해: 반응 속도 연구)

  • Kim, Sung-Kuk;Park, Sang-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.2
    • /
    • pp.20-27
    • /
    • 2004
  • Kinetic characteristics dependent on several factors such as iron mineral and organic solvents were investigated. When F $e^{0}$ , FeS and Fe $S_2$ were used as mediators, minerals affecting reaction rate were in the following order : $Fe_{0}$ 0/ > FeS > $FeS_2$ when in contact $C_2$C $l_{6}$ . The more chloride substituted, the higher reaction rate were observed. The reaction rates were dependent on pH, shaking rate, temperature and specific surface area. 1, 10-phenanthroline and EDTA degradation rates were fast, indicating that they adsorbed on the surface of the iron which makes the electron transfer reaction easy. Nitrate which has $\pi$* orbital of molecular can increase electron transfer rate because it is delocalized in its entity. The reaction rates were not affected by hydroquinone. Degradation rates were much enhanced with naturally occurring kaolinite because of the surface corrosion of Fe mineral. However, The reaction rate was not affected by F $e^{2+}$ or S $O_4$$^{2-}$ presented in solution.n.

Photocatalytic degradation of Trichloroethylene with annulus fluidized bed photoreactor (애뉼러스 유동층 광반응기에서 Trichloroethylene의 광촉매 분해반응 특성)

  • 임탁형;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.05a
    • /
    • pp.215-218
    • /
    • 2002
  • 대기로 배출되는 휘발성 유기화합물 중의 하나인 TCE (Trichroloethylene)를 제거하는 기술들은 설치비 및 운전비가 많이 요구되는 흡착, 응축, 소각기술 들이 있으며, 이를 대체하는 신기술로 광촉매 반응을 이용함으로서 유기휘발물을 상온과 상압에서 광반응시켜 제거함으로서, 설치 및 조업비 측면에서 경제적인 이점이 있다.(중략)

  • PDF

Optimization of Epoxide Hydrolase-Catalyzed Enantioselective Hydrolysis of Racemic Styrene Oxide (Rhodotorula sp. CL-83 유래의 에폭사이드 가수분해효소를 이용한 라세믹 Styrene Oxide 입체특이성 가수분해 조건 최적화)

  • 이은열
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.765-768
    • /
    • 2002
  • Enantioselective hydrolysis of racemic styrene oxide by Rhodotorula sp. CL-82 was investigated. Reaction conditions including pH, temperature, and volume ratio of organic cosolvent were optimized using response surface methodology, and the optimal conditions of pH, temperature, and the volume ratio of cosolvent were determined to be 7.64, $33.26^{\circ}C$, and 3.09 %(v/v), respectively. Chiral (S)-phenyl oxirane could be obtained with high enantiomeric purity (ee > 99%) and 20% yield (theoretical yield = 50%) at the optimal rendition.

Optimum Reaction Kinetics Model of Heat-resistant and Flame-Retardant Polymethyl Methacrylate (내열 및 난연성 Polymethyl Methacrylate의 최적 반응속도 모델에 관한 연구)

  • Kim, Dong-Keun;Seul, Soo-Duk;Sohn, Jin-Eon
    • Elastomers and Composites
    • /
    • v.22 no.4
    • /
    • pp.324-332
    • /
    • 1987
  • The thermal degradation of the homopolymer poly(methyl methacrylate) (PMMA) and flame-retardant tetrabrormobisphenol-A(TBBA) as well as of their blends were carried out using the thermogravimetric method in the stream of nitrogen gas with 60ml/min at various heating rate from 1 to $20^{\circ}C/min$. Friedman and Ozawa mathematical methods were used to obtain the value of activation energy.

  • PDF

CO2 Decomposition with Waste Ferrite (폐기물 페라이트를 이용한 CO2분해)

  • 신현창;김진웅;최정철;정광덕;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.146-152
    • /
    • 2003
  • The waste ferrites from magnetic core manufacturing process were used to $CO_2$gas decomposition to avoid the greenhouse effects. The waste ferrites are the mixed powder of Ni-Zn and Mn-Zn ferrites core. In the reduction of ferrites by 5% $H_2/Ar$ mixed gas, the weight loss of ferrites was about 14~16wt%. After the$CO_2$gas decomposition reaction, the weight of the reduced ferrites was increased up to 11wt%.$CO_2$gas was decomposed by oxidation of Fe and FeO in reduced compound and the phase of the waste ferrite was changed to spinel structure. A new technique capable of$CO_2$decomposition as low cost process through utilizing waste ferrite was development.