Kim, Taereem;Shin, Hongjoon;Nam, Woosung;Heo, Jun-Haeng
Journal of Korea Water Resources Association
/
v.48
no.12
/
pp.981-993
/
2015
The analysis of hydrologic time series data is crucial for the effective management of water resources. Therefore, it has been widely used for the long-term forecasting of hydrologic variables. In tradition, time series analysis has been used to predict a time series without considering exogenous variables. However, many studies using decomposition have been widely carried out with the assumption that one data series could be mixed with several frequent factors. In this study, the empirical mode decomposition method was performed for decomposing a hydrologic time series data into several components, and each component was applied to the time series models, autoregressive moving average (ARMA). After constructing the time series models, the forecasting values are added to compare the results with traditional time series model. Finally, the forecasted estimates from ARMA model with empirical mode decomposition method showed better performance than sole traditional ARMA model indicated from comparing the root mean square errors of the two methods.
In a typical trend-cycle decomposition of GDP, the trend component is usually assumed to follow a random walk process. This paper considers an ARIMA trend and assesses the validity of the ARIMA trend model. I construct univariate and bivariate unobserved-components(UC) models, allowing the ARIMA trend. Estimation results using U.S. data are favorable to the ARIMA trend models. I, also, compare the forecasting performance of the UC models. Dynamic pseudo-out-of-sample forecasting exercises are implemented with recursive estimations. I find that the bivariate model outperforms the univariate model, the smoothed estimates of trend and cycle components deliver smaller forecasting errors compared to the filtered estimates, and, most importantly, allowing for the ARIMA trend can lead to statistically significant gains in forecast accuracy, providing support for the ARIMA trend model. It is worthy of notice that trend shocks play the main source of the output fluctuation if the ARIMA trend is allowed in the UC model.
Kim, Taereem;Seo, Jungho;Joo, Kyungwon;Heo, Jun-Haeng
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.16-16
/
2017
기후 시스템의 다양한 상호작용으로 인해 나타나는 대표적 현상인 강우는 수문학적 분석 과정의 필수적인 요소이며 장기 강우를 예측하는 것은 효율적인 수자원 관리에 중요한 기반이 되고 있다. 이러한 강우는 장기적으로 지구의 대기-해양 순환 패턴의 영향을 받으며, 특히 엘니뇨와 라니냐와 같은 기상 이변이 발생할 경우 대규모 순환에 변화가 일어나게 되어 강우에 영향을 미칠 수 있다. 따라서 본 연구에서는 지구의 순환 패턴 특성을 수치화한 전지구적 기상인자 중에서 우리나라 장기 강우를 예측하기 위한 기상인자를 선정하고 시계열 모형 구축을 통하여 예측력을 평가하였다. 이를 위해 강우에 내재된 다양한 대기-해양 순환 패턴으로부터 나타나는 주기적 요소를 추출하기 위해 앙상블 경험적 모드분해법을 사용하여 강우를 분해한 후, 각 분해된 강우자료와 전지구적 기상인자와의 상관성 분석을 통해 높은 상관성을 가진 기상인자를 선별하고 단계식 변수선택법으로부터 유의미한 기상인자를 최종적으로 선정하였다. 그 결과, 우리나라 기상청 60개 지점의 월별 강우자료 중 전반적으로 영향을 미치는 기상인자를 선정할 수 있었으며, 선정된 기상인 자로 구축된 시계열 모형을 통해 우리나라 장기 강우를 예측하였다.
Although longitudinal studies mainly produce multivariate longitudinal data, most of existing statistical models analyze univariate longitudinal data and there is a limitation to explain complex correlations properly. Therefore, this paper describes various methods of modeling the covariance matrix to explain the complex correlations. Among them, modified Cholesky decomposition, modified Cholesky block decomposition, and hypersphere decomposition are reviewed. In this paper, we review these methods and analyze Korean children and youth panel (KCYP) data are analyzed using the Bayesian method. The KCYP data are multivariate longitudinal data that have response variables: School adaptation, academic achievement, and dependence on mobile phones. Assuming that the correlation structure and the innovation standard deviation structure are different, several models are compared. For the most suitable model, all explanatory variables are significant for school adaptation, and academic achievement and only household income appears as insignificant variables when cell phone dependence is a response variable.
The existing stochastic models for the data with hydrologic persistence can be classified into two categories; the short-term and long-term models.For the present study, the Hurst coefficients which are the dominant parameter in the Fast Fractional Gaussian Noise(FFGN)model, one of the long-term models. are estimated with historical annual and monthly streamflows. In order to verify the applicability of these estimators the statistical properties of the generated annual streamflows by FFGN model are compared with those of the historical annual streamflows. Then the generated annual streamflows by FFGN model are disaggregated into the monthly streamflows by disaggregation model at two sites, i.e. Waekman and Jindong, in the Nakdong River Basin. On the other hand, the monthly stream flows at the two sites were also generated by the two-site Matalas model which is one of the short-term models. To evaluate the applicability of the above models and to select the better model the statistical properties of the generated monthly streamflows by two models were compared with those of the historicals, respectively.
Communications for Statistical Applications and Methods
/
v.16
no.1
/
pp.127-135
/
2009
It is necessary to forecast the amount of the maximum electricity demand for stabilizing the flow of electricity. The time series data was collected from the Korea Energy Research between January 2000 and December 2006. The data showed that they had a strong linear trend and seasonal change. Winters seasonal model, ARMA model were used to examine it. Root mean squared prediction error and mean absolute percentage prediction error were a criteria to select the best model. In addition, a nonstationary generalized extreme value distribution with explanatory variables was fitted to forecast the maximum electricity.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.8
no.2
/
pp.161-173
/
1996
Two-dimensional numerical models with 1$^{\circ}$ and 1/3$^{\circ}$ resolution have been established to investigate the Ma distribution of global ocean tides. Especially, a 1/3$^{\circ}$ numerical model in this study has the most fine resolution among the existing global tidal model and it has been applied to the computation of detailed tidal distributions in the marginal seas and the shelf seas. Tidal characteristics in shallow areas could be hardly interpreted with the existing global chart due to the low resolution. The Ma tidal charts obtaind by 1$^{\circ}$ and 1/3$^{\circ}$ numerical model have been compared with the existing global maps and the altimetry-derived tidal charts. Also, the computed harmonic constants have been compared with the pelagic observations. The results obtained by 1/3$^{\circ}$ numerical model show better agreement with the existing global charts and the observed data than those obtained by 1$^{\circ}$ model. The possibility has been presented that the results obtained by 1/3$^{\circ}$ model can provide the open boundary conditions of the regional tidal numerical model.
Disaggregation model has recently become a major technique in the field of synthetic generation and the model is possibly one of the most widely acepted tools in stochastic hydrology. The application of disaggregation model is evaluated with the streamflow data at the Waegwan and Hyunpung stage gaugin station on the main stem of the Nakdong River. The disaggregation process of annual streamflow data and the method of parameter estimation for the model is reviewed and the statistical analysis of the generated monthly streamflows such as a computation of moment estimation of covariance and correlogram analysis is made. The results, disaggregated monthly streamflow, obtained by Disaggregation Basic Model for single site are compared with the historical streamflow data and also with the other model, Thomas-Fiering Model. The generated monthly streamflow data by two models have been investigated and verified by comparision of mean and standard deviation between the historical and generated data.
In longitudinal data analysis, the serial correlation of repeated outcomes must be taken into account using covariance matrix. Modeling of the covariance matrix is important to estimate the effect of covariates properly. However, It is challenging because there are many parameters in the matrix and the estimated covariance matrix should be positive definite. To overcome the restrictions, several Cholesky decomposition approaches for the covariance matrix were proposed: modified autoregressive (AR), moving average (MA), ARMA Cholesky decompositions. In this paper we review them and compare the performance of the approaches using simulation studies.
본 연구는 확산모형의 계산에 필요한 바람장의 시간해상도의 타당성을 파악하고, 대기역학모형과 대기확산모형의 공간 분해능에 따른 시간분해능이 미치는 영향을 분석한 것이다. 연구결과, 수치실험에서 초기(24시)의 경우, 시간해상도에 따른 확산의 차이는 크지 않았으나 시간이 경과함에 따라 입자확산분포의 차이가 크게 나타났다. 또한, 3시간 이하의 높은 시간해상도의 경우 입자분포의 차이가 크지 않으나, 6시간보다 간격이 큰 자료를 이용할 경우, 황사 입자분포의 양적 측면에서 큰 차이를 나났다. 입력 바람장의 시간 간격이 큰 경우에 부유 입자는 지역의 주풍 성분을 따라 분포하였다. 한편, 시간간격이 작은 경우 주풍의 직각성분인 남북성분의 효과가 크게 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.