• Title/Summary/Keyword: 분할타설

Search Result 21, Processing Time 0.024 seconds

A Numerical Study on the Characteristics of Plastic Shrinkage Cracking on Concrete Slab with Sequential Placement (분할타설되는 콘크리트 슬래브의 소성수축균열 특성에 대한 해석적 연구)

  • Kwak, Hyo-Gyoung;Ha, Soo-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.795-808
    • /
    • 2006
  • In this paper, an analytical method which can predict the occurrence of plastic shrinkage cracking on concrete slabs with sequential placement is proposed on the basis of the numerical model introduced in the previous study. The influence of many design variables on plastic shrinkage cracking such as the number of layers and the time interval between layers is quantitatively analyzed through parametric studies using the analytical method. In advance, two equations are introduced to take into account the effect of sequential placement on the plastic shrinkage cracking of concrete slab; The first one is to calculate the time at which the surface of concrete slab begins to dry, and the second one is to determine the critical time interval to prevent the surface drying of previously placed concrete layers. The timing of curing and the sequence of concrete placement, which are important for the prevention of plastic shrinkage cracking, can be effectively planned using the introduced both equations without any rigorous analysis.

Hydration Heat Analysis of Mass Concrete considering Heat Transfer Coefficient and Hydration Heat Difference (수화발열량차 및 열전달계수 변화를 고려한 매스콘크리트의 수화열 해석)

  • Han, Seung-Baek;Lee, Seong-Su;Shin, Hyo-Bum;Kim, Ho-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.249-252
    • /
    • 2008
  • In recent large-scale structures, as mass concrete type structure is frequently applied to the building, temperature crack due to hydration heat needs to be considered. Since a volume change is internally or externally restricted in a mold after placing concrete, temperature crack of mass concrete takes place. By this reason, the reduction method to control this crack is required. In this study, low heat mixture and hydration heat difference is used to execute the analysis of hydration heat, considering the changes of heat transfer coefficient according to curing conditions and block placement of mass concrete. For the analytical modelling, original portland cement and concrete of low heat mixture are placed in the upper and lower payer, respectively. A convection boundary condition is fixed because mass concrete of block placement is characterized by the difference of mold form and curing condition. Through the analysis results considering the changes of low heat mixture, block placement, and heat transfer coefficient, we check out the temperature and stress distribution and analyze the temperature crack reduction effect.

  • PDF

Research on the Efficient Manufacturing Method of Photocatalyst Concrete according to the Type and Mixing Ratio of Photocatalyst (광촉매 종류 및 혼입률에 따른 효율적 광촉매 콘크리트의 제조 방법에 관한 연구)

  • Park, Gi-Joon;Park, Jung-Jun;Kwak, Jong-Won;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.69-77
    • /
    • 2019
  • In this study, we evaluated the mechanical properties and nitrogen oxides removal characteristics according to the type and incorporation rate of the photocatalyst and investigated the method of separated placement for the production of economical and efficient photocatalyst concrete. As a result, when the photocatalyst incorporation rate was 5%, the highest compressive strength and elastic modulus were measured. As a result of evaluating the nitrogen oxides removal performance by the photocatalytic reaction, as the photocatalyst incorporation rate increased, the nitrogen oxide removal rate increased. At this time, the nitrogen oxides removal performance of photocatalyst P-25 was better than the NP-A. In consideration of economic efficiency, we have provided a method of separated placement for casting a constant thickness of concrete surface with photocatalyst concrete and evaluated the integrated performance at this time. As a result, it appears to be equal to or higher than mechanical performance and durability performance as compared with Plain, and it is judged that the integrated behavior is satisfied.

Hydration Heat Analysis of Seongdeok Cofferdam (성덕 다목적댐 가물막이댐의 수화열 해석)

  • Kim, Jin-Keun;Chu, In-Yeop;Jang, Bong-Seok;Ha, Jae-Dam;Park, Byung-Kook;Kim, Jeong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.481-484
    • /
    • 2008
  • The temperature crack of concrete structure is caused by the phenomenon which the concrete volume is restricted in the inside or outside part due th the temperature variations induced by the hydration heat of cement. And mass concrete structures are weak in temperature crack. Seongdeok multi-purpose dam is gravity dam which is being constructed in Cheongsong-gun, Gyeonsangbuk-do. Upstream cofferdam was constructed to examine the temperature crack due to hydration heat and to decide the height of placement. Therefore this study performed the hydration heat analysis of Seongdeok upstream coffer dam to analyze the hydration heat according to different height of placement and to compare with measured results.

  • PDF

A study of the Bent of Hydration Analysis Underground Pier Footing by Constrution Stages (시공단계를 고려한 교각기초의 수화열해석)

  • Park Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.3
    • /
    • pp.223-230
    • /
    • 2005
  • Lately, massive concrete structures are increasingly built. Mass concrete structures are cast in many stages with construction joints. Individually constructed segment exhibit different heat source properpies and time dependent properties. As such construction stages must be incorporated in a heat of hydration analysis model to truly reflect a real construction process. Thermal stress analysis is conducted to find the way of controlling the thermal crack of pier footing mat in this paper. The footing mat model fur the analysis is $12m\times14m$ area and 3m height. This study show the process of construction stage and analyzes the results for a foundation structure constructed in 2 stage pours.

  • PDF

The Bond Strength of Super Retarding Concrete According to Delay Time of Placement (타설지연시간 변화에 따른 초지연제 사용 콘크리트의 부착강도)

  • Han, Soo-Hwan;Sin, Se-Jun;Choi, Yoon-Ho;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.75-76
    • /
    • 2020
  • In this study, in order to check whether the adhesion strength can be secured when installing concrete by mixing super-retarding agents, the splitting tensile strength of the joints of each mold was measured and then analyzed. The results of the experiment showed that the bonding performance of the joint is adversely affected if the installation delay is delayed for more than 24 hours, and that the attachment performance can be secured if the installation is delayed within about 24 hours.

  • PDF

Realistic Analysis Method for Continuously Block-Placed Mass Concrete Structures Considering Block Size and Sequence of Concrete Placement (매스 콘크리트 구조물의 연속 분할타설시 타설블록의 크기 및 타설순서를 고려한 합리적인 수화열 해석)

  • 오병환;전세진;유성원
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.59-67
    • /
    • 1999
  • The mass concrete structures are generally constructed in an incremental manner by deviding the whole structures by a series of many blocks. The temperature and stress distributions of any specific block are continuously affected by the blocks placed before and after the specific block. For an accurate analysis of mass concrete structures, the sequence of all the blocks must be accordingly considered including the change of material properties with time for those blocks considered. The purpose of this study is to propose a realistic analysis method which can take into account not only the influence of the sequence, time interval and size of concrete block placement on the temperatures and stresses, but also the change of material properties with time. It is seen from this study that the conventional simplified analysis, which neglects material property changes of some blocks with time and does not consider the effect of adjacent blocks in the analysis, may yield large discrepancies in the temperature and stress distributions of mass concrete structures. This study gives a method to choose the minimum number of blocks required to obtain reasonably accurate results in analysis. The study provides a realistic method which can determine the appropriate size and time interval of block placement, and can be efficiently used in the design and construction of mass concrete structures.

Applicability of High-strength Mass Concrete through Setting Time and Horizontally-divided Placement (응결시간제어용 배합과 수평분할을 고려한 고강도 매스콘크리트의 적용성 평가)

  • Cho, Seung-Ho;Paik, In-Kwan;Lee, Dong-Ha;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.103-113
    • /
    • 2017
  • In the current study, retarding type and standard type admixture design of concrete have been proposed to control the generation of hydration heat for foundation members that use high strengths concrete. Finite element analysis also has been conducted to understand the rational placing heights of concrete. In addition, real-size structures have experimented and their results were compared to the analytical results to evaluate the reducing effect of thermal stress. For a large $6.5m{\times}6.5m{\times}3.5m$ member with retarding and standard type horizontal partition placement of concrete showed the manageable possibility of temperature difference within 25-degree Celcius between the middle and surface portion while the maximum temperature was 77-degree Celcius. Also, temperature cracking index from the finite element analysis appeared to be 1.49 that predicts no formation of cracking due to the effects of temperature. Finally, it appeared that horizontal partition placement of retarding and standard type concrete has the significant effect of reducing the thermal stress that generated by the hydration heat in the high strengths mass concrete.

A Study on the Thermal Crack Control of the In-Ground LNG Storage Tank as Super Massive Structures (지하식 LNG 저장탱크 구조물의 온도균열 제어에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.773-780
    • /
    • 2011
  • In this study, thermal stress analysis are carried out considering material properties, curing condition, ambient temperature, and casting date of the mass concrete placed in bottom slab and side wall of the in-ground type LNG tank as a super massive structure. Also, based on the numerical results, cracking possibility is predicted and counter measures to prevent the cracking are proposed. For the tasks, two optimum mix proportions were selected. From the results of the thermal stress analysis, the through crack index of 1.2 was satisfied for separately caste concrete lots except for the bottom slab caste in 2 separate sequences. For the double caste bottom slab, it is necessary introduce counter measures such as pre-cooling prior to the site construction. Also, another crack preventive measure is to lower the initial casting temperature by $25^{\circ}C$ or less to satisfy 1.2 through crack index criterion. In the $1^{st}$ and $2^{nd}$ caste bottom slab, the surface crack index was over 1.2. Therefore, the surface cracks can be controlled by implementing the curing conditions proposed in this study. Since the side wall's surface crack index was over 1.0, it is safe to assume that the counter preventive measures can control width and number of cracks.

Thermal Crack Control Using Optimized Steps of Concrete Placement in Massive Concrete Foundation (대형 기초 콘크리트의 분할타설 방법을 고려한 수화열에 의한 온도균열 제어 대책)

  • 김동규;조선규;김은겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1169-1174
    • /
    • 2000
  • Since the cement-water reaction in exothermic by nature, the temperature rise within a large concrete mass. Significant tensile stresses may develop from the volume change associated with the increase and decrease of the temperature with the mass concrete. There thermal stresses will cause temperature-related cracking in mass concrete structure. These typical type of mass concrete include mat foundation, bridge piers, thick wall, box type walls, tunnel linings, etc. Crack control methods can be considered at such stages as designing, selecting the materials, and detailing the construction method. Temperature and analysis was performed by taking into consideration of the cement type and content, boundary and environment conditions including the variations of atmospheric temperature and wind velocity. This is paper, the effect of separate placement of thermal crack control footing was analysed by a three dimensional finite element method. As a result, using this method, thermal crack control can be easily performed for structures such as mat structures.

  • PDF