DOI QR코드

DOI QR Code

Applicability of High-strength Mass Concrete through Setting Time and Horizontally-divided Placement

응결시간제어용 배합과 수평분할을 고려한 고강도 매스콘크리트의 적용성 평가

  • 조승호 (단국대학교 부설 리모델링연구소) ;
  • 백인관 (단국대학교 부설 리모델링연구소) ;
  • 이동하 (신동아건설(주) 건축사업본부 건축팀) ;
  • 노영숙 (서울과학기술대학교 건축학부 건축공학과)
  • Received : 2016.11.21
  • Accepted : 2017.01.09
  • Published : 2017.03.01

Abstract

In the current study, retarding type and standard type admixture design of concrete have been proposed to control the generation of hydration heat for foundation members that use high strengths concrete. Finite element analysis also has been conducted to understand the rational placing heights of concrete. In addition, real-size structures have experimented and their results were compared to the analytical results to evaluate the reducing effect of thermal stress. For a large $6.5m{\times}6.5m{\times}3.5m$ member with retarding and standard type horizontal partition placement of concrete showed the manageable possibility of temperature difference within 25-degree Celcius between the middle and surface portion while the maximum temperature was 77-degree Celcius. Also, temperature cracking index from the finite element analysis appeared to be 1.49 that predicts no formation of cracking due to the effects of temperature. Finally, it appeared that horizontal partition placement of retarding and standard type concrete has the significant effect of reducing the thermal stress that generated by the hydration heat in the high strengths mass concrete.

고강도 콘크리트를 사용한 기초 부재의 수화열 제어를 위하여 지연형과 표준형 콘크리트 배합설계를 제안하고, 합리적인 타설 높이 구현이 가능하도록 유한요소해석을 실시하였다. 또한, 실물 실험을 통하여 해석결과와 비교하여 온도응력 저감 효과를 평가하였다. $6.5m{\times}6.5m{\times}3.5m$ 크기의 대형 부재에 지연형 및 표준형 콘크리트를 수평분할 타설한 결과, 최고온도 $77^{\circ}C$에서 중심부와 표면부의 온도차를 $25^{\circ}C$ 이내로 관리가 가능한 것으로 나타났다. 또한, 유한요소해석에 의한 온도균열지수가 1.49로 나타나 온도균열에 발생하지 않는 것으로 예측되었다. 지연형 및 표준형 콘크리트의 수평분할 타설이 고강도 매스콘크리트의 수화열에 의한 온도 응력 해소에 효과가 있는 것으로 나타났다.

Keywords

References

  1. Park, C. K., Kim, B. H., Lee, H. S., (2014), Evaluation of Hydration Heat of Mass Concrete with Capsulated Slurry PCM and FEM Study for Analyzing Thermal Crack, Journal of the Korea Institute of Building Construction, 14(5), 379-388. https://doi.org/10.5345/JKIBC.2014.14.5.379
  2. Ko, J. H., Yoo, S. Y., Koo, J. S., Moon, H. J., Kim, J. J., Park, S. J., (2012), An experimental study to apply for high-rise construction according to various technical properties of ultra high-strength concrete , Journal of the Architectural Institute of Korea, Structure & Construction, 28(1), 85-92. https://doi.org/10.5659/JAIK_SC.2012.28.1.85
  3. Han, S. Y., Lee, C. S., Baek, D. H., Jang, D. B., Han, M. C., Han, C. G. (2010), Field Application of the Mass Concrete Utilizing Combined Method for Temperature Crack Reduction, Journal of the Korea Institute of Building Construction Spring Conference, 10(1), 37-39. https://doi.org/10.5345/JKIC.2010.10.5.037
  4. Gong, M. H., Jung, S. J., (2006), Study of Strength Development of Ultra High-Strength Concrete, Journal of the Architectural Institute of Korea, Structure & Construction, 22(6), 111-118.
  5. Baik, B. H. (2006), A Fundamental Study on the Hydration Heat Reduction of Transfer Girder Mass Concrete Controlling Setting Time, Journal of the Architectural Institute of Korea, Structure & Construction, 22(3), 87-93.
  6. Han, M. C. (2006), Prediction of Setting Time of Concrete Using Fly Ash and Super Retarding Agent, Journal of the Korea Concrete Institute, 18(6), 759-767. https://doi.org/10.4334/JKCI.2006.18.6.759
  7. Jeon, C. K., Kim, J., Shin, D. A., Yoon, G. W., Oh, S. G., Han, C. G. (2005), Field Application of Setting Time Difference Method Using SRA for Reduction of Hydration Heat of Mass Concrete, Journal of the Korea Institute of Building Construction Spring Conference, 5(1), 21-24.
  8. Jeon, C. K., Yoon, C. W., Sin, D. A., Oh, S. G., Han, C. G., (2003), The Properties of Temperature History of Mass Concrete Place with Horizontal Division Using Setting Time Difference by Super Retarding Agent, Journal of the Architectural Institute Fall Conference of Korea, 23(2), 447-450.
  9. Lee, J. W., Chung, K. S. (2000), Application and Concrete Mix design by Control methods of Thermal Cracking in Mass Concrete Structure considering the Constructional Condition, Journal of the Architectural Institute of Korea, Structure & Construction, 16(7), 87-94.
  10. Kim, J. Y. (2007), Hydration Heat Analysis of Mass Concrete Considering Low Heat Mixture and Block Placement, Master's course Thesis, Cheongju University.
  11. Jung, S. J., Kang, B. H., Lee, C. S., Seo, S. W., Lee, Y. D., Lim, N. G., Kim, S. S., Son, J. K., Paik, M. S. (2012), Architecture Materials, Kimoondang, 90.
  12. Korea Concrete Institute (2011), Concrete Engineering, Kimoondang, 129-130.
  13. Ministry of Land, Infrastructure and Transport (2009), Concrete standard specification.
  14. Korea Concrete Institute (1997), Concrete Admixture, Kimoondang, 198-200.
  15. Felekoglu, B., Turkel, S., & Baradan, B. (2007), Effect of water/cement ratio on the fresh and hardened properties of selfcompacting concrete, Building and Environment. 42(4), 1795-1802. https://doi.org/10.1016/j.buildenv.2006.01.012