다양한 기능과 센서를 탑재한 최신 모바일 디바이스는 사용자의 위치, 전화기록, SMS, 사진, 동영상 등 사용자에 관한 다양한 정보를 지속적으로 수집할 수 있기 때문에 개인의 생활을 이해하고 다양한 서비스를 제공할 수 있는 가능성을 가지고 있다. 하지만, 모바일 장치의 성능 제약 및 환경 불확실성으로 인해 아직까지 많은 연구 과제들이 남아 있다. 본 논문에서는 이러한 모바일 환경의 문제를 극복하기 위해 베이지안 네트워크를 이용한 라이프 로그 분석 모델 및 자동 학습 방법을 제안한다. 제안하는 베이지안 네트워크 모델은 모듈화 되어서 계산량은 감소되었으며, 자동 학습 방법을 통해 지속적인 업데이트가 가능하다. 이는 제안하는 방법이 복잡한 확률 모델을 자동으로 분할하는 방법과 분할된 상태에서의 유기적인 추론 방법을 포함하고 있기에 가능하다. 실험에서는 실제 모바일 장치에서 수집된 로그 데이터를 이용하여 제안하는 방법에 의한 실험 결과를 분석하고 분할을 통한 효율성 향상을 논의 한다.
본 논문은 상향식 현저함 모델을 이용하여 입력 영상으로부터 시각적 주의를 갖는 영역들을 자동으로 검출하는 방법을 제안한다. 제안한 방법에서는 인간의 시각 시스템과 같이 사전 지식 없이 시각정보의 공간적인 분포에 근거하여 장면을 해석하는 상향식 현저함 모델 방법을 입력 영상에 적용하여 관심 물체 영역을 검출하는 연구이다. 상향식 현저함 방법은 Treisman의 세부특징이론 연구에서 제시한 바와 같이 시각적 주의를 갖는 영역은 시각정보의 현격한 대비차이를 가지는 영역으로 집중되어 배경에서 관심영역을 구분할 수 있다. 입력 영상에서 현저함 모델을 통해 3차원 현저함 맵을 생성한다. 그리고 생성된 현저함 맵으로부터 실제 관심영역들을 검출하기 위해 제안한 방법에서는 적응적 임계치 방법을 적용하여 관심영역을 검출한다. 제안한 방법을 관심영역 분할에 적용한 결과, 영역 분할 정확도 및 정밀도가 약 88%와 89%로 제시되어 관심 영상분할 시스템에 적용이 가능함을 알 수 있다.
본 논문에서는 분할기반 은닉 마르코프 모델(segmentation based hidden Markov model)과 다층 퍼셉트론 (multi-layer perceptron)을 결합한 영문수표 필기단어 (legal word) 인식시스템을 제안하였다. 가변길이의 필기체 영문 단어 분할결과를 인식할 수 있도록 은닉 마르코프 모델을 이용하여 명확한 분할기반 (explicit segmentation-based) 단어단위 (word level) 인식기를 구현하고 다층 퍼셉트론을 이용하여 내재적 분할기반 (implicit segmentation-based) 단어단위 인식기를 구현하였다. 그리고 이종(heterogeneous)의 두 인식기를 새로운 결합 확률추정방식에 따라 결합함으로서 상호 보완 능력을 극대화시킬 수 있는 영문수표 필기단어 인식시스템을 구현하였다. 제안한 시스템을 캐나다 콘코디아 대학의 CENPARMI 영문 수표 데이터베이스에 적용하여 실험해 본 결과 기존의 연구결과에 비해 비교적 우수한 인식성능을 얻을 수 있었다.
본 논문은 MR 영상의 비지도 분할을 위하여 MDL원리를 이용한 통계적 모델기반의 적응적 방법을 제안한다. 이 방법에서 조직 영역을 MRF로 모델링함으로써 잡음에 대응하고, 창으로 정의되는 국소영역 내의 밝기값을 가우스 혼합으로 모델링함으로써 영상의 비균일성을 흡수한다. 분할 알고리즘은 ICM을 기반으로 하며 MAP를 근사적으로 추정하고, 모델 파라미터를 국소영역으로부터 구한다. 파라미터 추정과 분할을 위한 창의 크기는 MDL원리를 이용하여 영상으로부터 추정한다. 실험에서 제안한 방법이 특히 비균일성이 있는 MR영상의 분할에서 국소영역의 영상특성을 잘 반영하였으며, 기존의 방법보다 더 좋은 결과를 보여주었다.
임베디드 시스템의 하드웨어 구성요소들에 대한 성능 고도화가 요구됨에 따라 이에 탑재될 소프트웨어의 개발 방법도 영향을 받고 있다. 특히 MPSoC와 같은 고가의 하드웨어 아키텍처에서는 효율적인 자원의 사용 및 성능의 향상을 위해 소프트웨어 측면에서의 고려가 필수적으로 요구된다. 따라서 본 연구에서는 임베디드 소프트웨어 개발과정에서 멀티프로세서 기반의 하드웨어 아키텍처를 고려하는 소프트웨어 태스크의 분할기법을 제시한다. 제시하는 기법은 UML 기반의 소프트웨어 모델을 CBCFG (Constraints-Based Control Flow Graph)로 변환하고, 이를 병렬성과 데이터 의존성을 고려한 소프트웨어 컴포넌트로 분할하는 기법이다. 이러한 기법은 임베디드 소프트웨어의 플랫폼 의존적인 모델 개발과 태스크 성능 예측 등을 위한 자료로 활용할 수 있다.
본 논문에서는 다중 사용자를 지원하는 분산 소프트웨어 개발 환경에서 동시성을 향상시킬수 있는 공유 데이타 분할 모델을 제안한다. 제안된 모델에서는 공유 데이타에 해당하는 목표 소프트웨어 시스템을 프로젝트 역할을 기반으로 분할한 후, 분산 환경의 각 클라이언트에 분산시키고 이를 다시 뷰(view) 객체와 코어(core) 객체로 분할하여 저장한다. 여러 클라이언트가 참여하는 협동 작업에서는 뷰객체만을 각 클라이언트에 복사(replicate)하여 빠른 응답 시간을 보장하도록 하고, 코어 객체는 하나의 클라이언트에만 저장한 한 후 역할 단위의 잠금(locking) 기법을 이용하여 불일치 문제가 발생하지 않도록 하였다. 실험 결과, 제안된 모델은 기존 도구들에서 사용하는 클래스 단위의 잠금 기법보다 12${\sim}$18%의 성능 향상을 보였고, 클라이언트의 수가 증가하더라도 응답 시간이 급격히 증가하지 않아 확장성(scalability) 이 뛰어난 특징을 보였다.
근감소증은 영양부족, 운동량 감소 그리고 노화 등으로 정상적인 근육의 양과 근력 및 근 기능이 감소하는 질환을 말한다. 근감소증은 보편적으로 유럽 근감소증 실무그룹분석(EWGSOP)에서 정의한 측정 방법을 따른다. 본 논문에서는 근감소증 진단을 위한 영상 분할 모델을 개발하고 외부검증하는 방법에 대해서 제안한다. 우리는 CT 영상에서 L3 영역을 선별하여 자동으로 근육, 피하지방, 내장지방을 분할할 수 있는 인공지능 모델을 U-Net을 사용하여 개발하였다. 또한 모델의 성능을 평가하기 위해서 분할영역의 IOU(Intersection over Union)를 계산하여 내부검증을 진행하였으며, 타 병원의 데이터를 이용하여 같은 방법으로 외부검증을 진행한 결과를 보인다. 검증 결과를 토대로 문제점과 해결방안에 대해서 고찰하고 보완하고자 했다.
본 논문에서는 딥러닝을 이용한 영상 분할에서 성능을 향상하기 위해 퍼지 논리를 적용하는 퍼지 딥러닝 모델인 퍼지 U-Net을 제안한다. 퍼지 논리를 이용한 퍼지 모듈을 영상 분할에서 우수한 성능을 보이는 딥러닝 모델인 U-Net에 결합하여 다양한 형태의 퍼지 모듈을 시뮬레이션하였다. 제안된 딥러닝 모델의 퍼지 모듈은 이미지의 특징맵과 해당 분할 결과 사이의 본질적이고 복잡한 규칙을 학습다. 이를 위해 치아 CBCT 데이터에 적용하여 제안된 방법의 우수성을 입증하였다. 시뮬레이션 결과 제안된 퍼지 U-Net에서 더하기 스킵 연결을 사용한 모델의 ADD-RELU 퍼지 모듈 구조의 성능이 시험용 데이터에 대해 0.7928로 가장 우수한 것을 볼 수 있다.
화자 분할 기술은 오디오 데이터로부터 자동적으로 화자 경계 구간을 검출하는 것이다. 화자 분할 방식은 화자에 대한 선행 지식 사용 여부에 따라 거리기반 방식과 모델기반 방식으로 나누어진다. 본 논문에서는 eigenvoice 기반의 화자가중치 거리를 이용한 화자 분할 방식을 도입하고, 이 방식을 대표적인 거리 기반 방식들과 비교한다. 또한, 화자가중치의 거리 측정 함수로 유클리드 거리와 cosine 유사도를 사용하여 화자 분할 성능을 비교하고, eigenvoice 방식에 의해 화자 적응된 모델들 사이의 직접적인 거리를 이용한 화자 분할 방식과의 비교를 통해 화자가중치 거리를 이용한 방식이 계산량면에서 효율적인 점을 검증한다.
예비중등수학교사들이 장차 중등학교에서 학생들의 수학화 교수-학습을 안내하기 위해서는, 그들이 먼저 수학화에 익숙해야 하는 바, 이를 위해서는 그것을 목표로 하는 적절한 프로그램이 필요하다. 이 연구에서는 그러한 목적에서, 인접한 두 분할 원소의 차가 일정한 경우의 '수 분할 모델'을 탐구하는 수학화 교수단원을 설계한다. 그것은 분할 모델로 조직된 현상을 다시 새롭게 조직하는 본질을 고안하게 하는 일련의 과정을 안내한다. 특히, 이 연구에서는 새로운 본질과 그것이 얻어지는 과정에 관해 논의한다. 그러나 이때 분할될 수가 자연수인 경우로 한정한다. 또, 원소와 원소의 차가 정수인 경우로 한정한다. 이 연구에서 설계하는 교수단원을 통해 예비중등교사들은 수학자들이 정리를 만들어 내는 것과 유사한 과정을 밟으면서 2차적인 수학화를 경험하고 훈련할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.