• Title/Summary/Keyword: 분지 모델링

Search Result 46, Processing Time 0.024 seconds

A Study on Geophysical Characteristics and Regional Geological Structures of the Southwestern Yellow Sea of Korea using Gravity and Magnetic Data (중력 및 자력자료를 이용한 황해 남서부해역의 지구물리학적 특성 및 광역 지구조 연구)

  • Kim, Chang-Hwan;Park, Chan-Hong
    • Journal of the Korean earth science society
    • /
    • v.31 no.3
    • /
    • pp.214-224
    • /
    • 2010
  • Gravity and Magnetic survey data were analyzed to investigate the geophysical characteristics and regional geological structures of the southwestern Yellow Sea. The set of data about the southwestern part of the Yellow Sea in Korea was one collected by the Korea Ocean Research and Development Institute (KORDI) in 2003, 2004, and 2005. The Yellow Sea has a few basins and the study area also includes parts of the Heuksan Basin and the East China Sea Basin. The bathymetry of the study area ranges from about ?40 m southwestward near China to about 150 m northeastward near Korea. The bathymetry has the gentle rise and fall and the smooth slope. The gravity anomalies, from sea surface gravity and satellite gravity data, reflect the basement rocks rather than the smooth bathymetry. The gravity anomalies are higher on Northeastern part of the study area and lower over the South of the Heuksan Basin. The analytic signal from the Bouguer anomaly shows higher anomalous zones near the boundaries of the basins. The magnetic anomalies and the analytic signal, from the magnetic data, suggest that the complex anomalies on the Northern part are attributed to the volcanic intrusions and that the smooth patterns in the Southern part are based on the lack of the intrusions. The power spectrum analysis of the Bouguer anomalies and the magnetic anomalies indicate that the depth to the Moho discontinuity varies from about 30.2 to 28.3 km and that the depths of the basement rocks and the Eocene discontinuity range from about 8.4 to 8 km and from about 1.5 to 1.7 km, respectively. The inversion of the Bouguer anomaly shows that the Moho depth to the Western part of the study area near China is slightly deeper than the Eastern part near Korea. The result of 2-D gravity modeling has a good coherence with the results of the analytic signal, the power spectrum analysis, and the inversion.

Reviewing geology and groundwater change in a fault zone caused by tunnel construction (터널공사에 의한 단층대 지역의 지질 및 지하수 변화 분석)

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Lee, Chung-Mo;Lim, Woo-Ri;Yun, Sul-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.466-466
    • /
    • 2017
  • 지하공간의 개발과 지하공간의 굴착으로 인한 지표수 및 지하수 시스템의 변화나 굴착면 주위의 지하수 유동 체계의 변화는 터널내로의 지하수 유입, 지표수 고갈을 가져온다. 또한 터널 상부의 지반에서 현지응력의 변화로 인한 지하수 유출은 지표침하, 하천수 및 계곡수 고갈을 발생시킬 수 있다. 그러나, 터널설계 시 비용 및 시간, 현장의 진입조건 등의 제약으로 상세한 지반조사의 실시가 이루어지지 않을 때가 있다. 또한, 터널 공사가 진행되는 중에는 공사기간과 공사비 때문에 별도의 지반조사를 하지 않는다. 그 대신에 터널 막장에서 실시하는 Face Mapping을 토대로 공사를 진행하며, 대규모 위험요소가 발견되지 않는 이상 별도의 비용과 시간을 투입하여 추가 지질 및 지반 조사를 실시하는 경우는 매우 드물다. 연구지역의 지질은 경상분지내 백악기 하양층군의 퇴적암류, 이를 관입/분출한 불국사화강암류 및 제3기 화산암류, 전기 에오세 연일층군에 대비되는 퇴적암류로 구성되어 있다. 이들을 피복하는 제4기 충적 퇴적층은 주로 단층곡과 동측 지괴의 선상지 및 하천을 따라 분포한다. 연구지역에는 폭 100 m 이상의 대규모 단층대가 발달하였으며 제4기 단층운동으로 인한 단층파쇄대가 존재한다. 퇴적암 분포지역에서는 반복층서가 관찰되며 소규모 단층, 단열, 변형띠 등이 연속적으로 발달해 있다. 본 연구에서는 터널공사에 의한 지하수 변화를 확인하기 위하여 현장추적자 시험과 수질분석 및 지하수 모델링을 실시하였다. 현장 수질 분석에 의한 지표수와 지하수 간의 수질의 차이를 보면, 알칼리도를 제외한 대부분의 수질 항목이 서로 유사성을 보인다. 전기전도도(EC), TDS, 알칼리도의 경우 지표수의 수원지에서 터널 내부로 유입이 일어나고 있다. 이는 터널 공사의 영향으로 판단되며, 현장에서 실시한 추적자 시험에서는 추적자의 이동 시간이 매우 빨라 지표 수원지로부터 지표수가 터널내부로 빠른 속도(10시간 이내)로 유입된다고 판단된다. 지하수 모델링 결과, 정상류 상태에서는 지하수가 북동쪽의 높은 고도에서 서남쪽의 낮은 고도로 흐르는 것으로 확인되며, 가뭄시에도 지하수 함양으로 지하수가 고갈되지는 않는 것으로 나타났다. 부정류 상태 모델링 결과, 일일 평균 $32.49m^3$의 지하수가 터널 내부로 유입되는 것으로 산정되었다. 이 양은 터널 내부뿐만 아니라 터널 공사 현장 주위로도 지하수 유출이 일어나고 있음을 지시한다.

  • PDF

An Exploratory Study of e-Learning Satisfaction: A Mixed Methods of Text Mining and Interview Approaches (이러닝 만족도 증진을 위한 탐색적 연구: 텍스트 마이닝과 인터뷰 혼합방법론)

  • Sun-Gyu Lee;Soobin Choi;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.21 no.1
    • /
    • pp.39-59
    • /
    • 2019
  • E-learning has improved the educational effect by making it possible to learn anytime and anywhere by escaping the traditional infusion education. As the use of e-learning system increases with the increasing popularity of e-learning, it has become important to measure e-learning satisfaction. In this study, we used the mixed research method to identify satisfaction factors of e-learning. The mixed research method is to perform both qualitative research and quantitative research at the same time. As a quantitative research, we collected reviews in Udemy.com by text mining. Then we classified high and low rated lectures and applied topic modeling technique to derive factors from reviews. Also, this study conducted an in-depth 1:1 interview on e-learning learners as a qualitative research. By combining these results, we were able to derive factors of e-learning satisfaction and dissatisfaction. Based on these factors, we suggested ways to improve e-learning satisfaction. In contrast to the fact that survey-based research was mainly conducted in the past, this study collects actual data by text mining. The academic significance of this study is that the results of the topic modeling are combined with the factor based on the information system success model.

Seismic wave propagation through surface basalts - implications for coal seismic surveys (지표 현무암을 통해 전파하는 탄성파의 거동 - 석탄 탄성파탐사에 적용)

  • Sun, Weijia;Zhou, Binzhong;Hatherly, Peter;Fu, Li-Yun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Seismic reflection surveying is one of the most widely used and effective techniques for coal seam structure delineation and risk mitigation for underground longwall mining. However, the ability of the method can be compromised by the presence of volcanic cover. This problem arises within parts of the Bowen and Sydney Basins of Australia and seismic surveying can be unsuccessful. As a consequence, such areas are less attractive for coal mining. Techniques to improve the success of seismic surveying over basalt flows are needed. In this paper, we use elastic wave-equation-based forward modelling techniques to investigate the effects and characteristics of seismic wave propagation under different settings involving changes in basalt properties, its thickness, lateral extent, relative position to the shot position and various forms of inhomogeneity. The modelling results suggests that: 1) basalts with high impedance contrasts and multiple flows generate strong multiples and weak reflectors; 2) thin basalts have less effect than thick basalts; 3) partial basalt cover has less effect than full basalt cover; 4) low frequency seismic waves (especially at large offsets) have better penetration through the basalt than high frequency waves; and 5) the deeper the coal seams are below basalts of limited extent, the less influence the basalts will have on the wave propagation. In addition to providing insights into the issues that arise when seismic surveying under basalts, these observations suggest that careful management of seismic noise and the acquisition of long-offset seismic data with low-frequency geophones have the potential to improve the seismic results.

A Study On The Thermal Movement Of The Reactor Coolant System For PWR (가압 경수로의 냉각재 계통 열팽창 거동에 관한 연구)

  • Yoon, Ki-Seok;Park, Taek sang;Kim, Tae-Wan;Jeon, Jang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.393-402
    • /
    • 1995
  • The structural analysis of the reactor coolant system mainly consist of too fields. The one is the static analysis considering the impact of pressure and temperature built up during normal operation. The other is the dynamic analysis to estimate the impact of postulated events such as the seismic loads or postulated branch line pipe breaks event. Since the most important goal of the RCS structural analysis is to prove the safety of the RCS during normal operation or postulated events, a widely proven theory having enough conservatism is adopted. The load occurring on the RCS during normal operation is considered as the basic design loading condition throughout whole plant life time. The most typical characteristic of the RCS during normal operation is the thermal expansion of the RCS caused by reactor coolant with high temperature and pressure. Therefore, the exact estimation on the thermal movement of the RCS is needed to get more clear understanding on the thermal movement behavior of the RCS. In this study, the general structural analysis concept and modeling method to evaluate the thermal movement of the RCS under the normal plant operation condition are presented. To discuss the validation of the suggested analysis, analysis results are compared with the measured data which ore referred from the standardized 1000 MWe PWR plant under construction.

  • PDF

Numerical Analysis of Fault Stability in Janggi Basin for Geological CO2 Storage (CO2 지중저장에 따른 장기분지 내 단층안정성 기초해석)

  • Jung-Wook Park;Hanna Kim;Hangbok Lee;Chan-Hee Park;Young Jae Shinn
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.399-413
    • /
    • 2023
  • The present study conducted a numerical modeling of CO2 injection at the Janggi Basin using the TOUGH-FLAC simulator, and examined the hydro-mechanical stability of the aquifer and the fault. Based on the site investigations and a 3D geological model of the target area, we simulated the injection of 32,850 tons of CO2 over a 3-year period. The analysis of CO2 plume with different values of the aquifer permeability revealed that assuming a permeability of 10-14 m2 the CO2 plume exhibited a radial flow and reached the fault after 2 years and 9 months. Conversely, a higher permeability of 10-13 m2 resulted in predominant westward flow along the reservoir, with negligible impact on the fault. The pressure changes around the injection well remained below 0.6 MPa over the period, and the influence on the hydro-mechanical stability of the reservoir and fault was found to be insignificant.

Modeling of the Artery Tree in the Human Upper Extremity and Numerical Simulation of Blood Flow in the Artery Tree (상지동맥 혈관계의 모델링과 혈유동의 전산수치해석)

  • Kim, Keewon;Kim, Jaeuk U.;Beak, Hyun Man;Kim, Sung Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.221-226
    • /
    • 2016
  • Since arterial disease in the upper extremity is less common than that in the lower extremity, experimental and numerical investigations related to upper extremity have been rarely performed. We created a three-dimensional model of the arteries, larger than approximately 1 mm, in a Korean adult's left hand (from brachial to digital arteries), from 3T magnetic resonance imaging (MRI) data. For the first time, a three-dimensional computational fluid dynamic method was employed to investigate blood flow velocity, blood pressure variation, and wall shear stress (WSS) on this complicated artery system. Investigations were done on physiological blood flows near the branches of radial and deep palmar arch arteries, and ulnar and superficial palmar arch arteries. The flow is assumed to be laminar and the fluid is assumed to be Newtonian, with density and viscosity properties of plasma.

A benchmark experiment for analogue modeling of extensional basin formation and evaluation of applicability of centrifuge test (인장 분지 형성을 구현하기 위한 상사 모델링 벤치마크 실험 및 원심모형실험의 적용성 평가)

  • Lee, Sung-Bok;Park, Heon-Joon
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.605-614
    • /
    • 2018
  • For physical experiments like analogue modeling that designed for studying geological deformation, reproducibility of the deformation is important to guarantee the reliability of the experiment. In this study, the normal fault generated by extensional stress is benchmarked using a sand box model. The scaling factors for the modeling test are considered and the experiments are conducted by setting the appropriate material, extensional stress, and boundary condition in the same way as in a benchmark experiment. In addition, a large centrifuge facility is used to vary the centrifugal acceleration and extension rate in the same sized model to account for the scaling factors of the physical quantity during extensional behavior. At 1 g benchmark condition and a centrifugal field at 10 g, a constant rate of the extensional stress is implemented and the topographic evolution is reliably measured. In this study, the reliability and applicability of large centrifuge model tests are evaluated for formulating experiments designed to study geological deformation.

Assessing the repeatability of reflection seismic data in the presence of complex near-surface conditions CO2CRC Otway Project, Victoria, Australia (복잡한 천부구조하에서 반사법 탄성파자료의 반복성에 대한 평가, 호주, 빅토리아, CO2CRC Otway 프로젝트)

  • Al-Jabri, Yousuf;Urosevic, Milovan
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.24-30
    • /
    • 2010
  • This study utilises repeated numerical tests to understand the effects of variable near-surface conditions on time-lapse seismic surveys. The numerical tests were aimed at reproducing the significant scattering observed in field experiments conducted at the Naylor site in the Otway Basin for the purpose of $CO_2$ sequestration. In particular, the variation of elastic properties of both the top soil and the deeper rugose clay/limestone interface as a function of varying water saturation were investigated. Such tests simulate the measurements conducted in dry and wet seasons and to evaluate the contribution of these seasonal variations to seismic measurements in terms of non-repeatability. Full elastic pre-stack modelling experiments were carried out to quantify these effects and evaluate their individual contributions. The results show that the relatively simple scattering effects of the corrugated near-surface clay/limestone interface can have a profound effect on time-lapse surveys. The experiments also show that the changes in top soil saturation could potentially affect seismic signature even more than the corrugated deeper surface. Overall agreement between numerically predicted and in situ measured normalised root-mean-square (NRMS) differences between repeated (time-lapse) 2D seismic surveys warrant further investigation. Future field studies will include in situ measurements of the elastic properties of the weathered zone through the use of 'micro Vertical Seismic Profiling (VSP)' arrays and very dense refraction surveys. The results of this work may impact on other areas not associated with $CO_2$ sequestration, such as imaging oil production over areas where producing fields suffer from a karstic topography, such as in the Middle East and Australia.

Magnetic anomaly in the southern part of the Yellow Sea (서해남부해역의 지자기 이상대 해석)

  • Kim, Sung-Bae;Choi, Sung-Ho;Suh, Man-Cheol
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.85-92
    • /
    • 2008
  • National Oceanographic Research Institute is carrying out an oceanographic survey for the entire sea areas around Korean Peninsula annually starting with the East Sea from 1996 by establishing a national oceanographic basic map survey plan for the sea areas under the jurisdiction of Korea, so this paper used the oceanographic geomagnetism data measured at the southern area of the Yellow Sea using 'Hae Yang 2000' in 1999, aiming at clarifying the cause of geomagnetic abnormality zone during the course of treating and analyzing the geomagnetic data. For treatment of magnetic data, we obtained electromagnetic force values and geomagnetic abnormality values around the investigated sea area through a process of searching and removal of bad data, correction of sensor positions, correction of magnetic field effects around the hull, correction of diurnal variation, normal correction, correction of cross point errors, etc. The electromagnetic force distribution around the investigated sea area was $49000\;{\sim}\;51600\;nT$, which is judged to be within the normal electromagnetic force intensity distribution range around the Yellow Sea. The isodynamic lines are distributed in Northeast-Southwest direction, and electromagnetic force values are increasing toward the northwest. The result of comparing the magnetic abnormality around the sea area among $124^{\circ}$ 49' 48" E, $35^{\circ}$ 10' 48" N $\sim$ $125^{\circ}$ 7' 48" E, and $35^{\circ}$ 33' 00" N sections with the elastic wave cross section and the result of modeling coincide well with the underground geological structure clarified from the existing elastic wave survey cross section. Therefore, it is judged that the distribution of magnetic force abnormality generally shows the effect pursuant to the distribution of the sedimentary basins in the Tertiary period and the bedrocks in the Cretaceous period which are well developed in the bottom of the sea.

  • PDF