• Title/Summary/Keyword: 분자 생물학

Search Result 206, Processing Time 0.024 seconds

Pathophysiological Functions of Deubiquitinating Enzymes in Obesity and Related Metabolic Diseases (탈유비퀴틴화 효소 DUBs의 비만 및 대사 관련 질환에서 병태생리학적 기능)

  • Lee, Seul Gi;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.32 no.6
    • /
    • pp.476-481
    • /
    • 2022
  • Ubiquitin signaling regulates virtually all aspects of eukaryotic biology and dynamic processes in which protein substrates are modified by ubiquitin. To regulate these processes, deubiquitinating enzymes (DUBs) cleave ubiquitin or ubiquitin-like proteins from these substrates. DUBs have been implicated in the pathogenesis of cancer, leading to the development of increasing numbers of small-molecule DUB inhibitors. On the other hand, recent studies have focused on the function of DUBs in metabolic diseases such as obesity, diabetes, and fatty liver diseases. DUBs play a positive or negative role in the progression and development of metabolic diseases. Their involvement in cell pathology and regulation of major transcription factors in metabolic syndrome has been examined in vitro and in animal and human biopsies. UCH, USP7, and USP19 were linked to adipocyte differentiation, body weight gain, and insulin resistance in genetic or diet-induced obesity. CYLD, USP4, and USP18 were found to be closely associated with fatty liver diseases. In addition, these liver diseases were accompanied by body weight change in certain cases. Collectively, in this review, we discuss the current understanding of DUBs in metabolic diseases with a particular focus on obesity. We also provide basic knowledge and regulatory mechanisms of DUBs and suggest these enzymes as therapeutic targets for metabolic diseases.

Effect of Neungi (Sarcodon aspratus) Mushroom and Its Protease Addition on the Meat Tenderizing (능이버섯 및 Protease효소의 첨가가 연육에 미치는 영향)

  • Cho, Hee-Yeon;Jeong, Seon-Hwa;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.39-44
    • /
    • 2004
  • This study was carried out to investigate the tenderizing effect of Neungi mushroom (Sarcodon aspratus) powder and its protease. The addition of Neungi mushroom powder and its protease enhanced water retention values (WRY) of meat. The WRY of meat was increased 26.8% by protease addition, compared to 13.8% WRV by sugar addition. This increase in WRY derived to the increase of water soluble fraction in the meat texture by hydrolysis of meat protein, and had the meat tenderized. Concerned to the meat tenderizing effect, the addition of Neungi mushroom powder and its protease have decreased of meat hardness and gave similar tenderizing effect, as compared to commercial tenderizer, papain. The decreasing rates of meat hardness were 51.6% of Neungi mushroom powder, 58.5% of its protease, and 563% of commercial tenderizer, papain. This tenderizing effect of protease attributed to the degradation of muscle fiber protein in meat, such as actin, myosin and connectin etc. The addition of Neungi mushroom to foods gives significant changes in food color, mainly decreasing lightness.

Update on the Taxonomy of Clinically Important Anaerobic Bacteria (임상적으로 중요한 무산소성 세균의 분류 업데이트)

  • Myungsook, Kim
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.4
    • /
    • pp.239-248
    • /
    • 2022
  • The taxonomy of bacteria in the field of clinical microbiology is in a state of constant flux. A large-scale revamping of the classification and nomenclature of anaerobic bacteria has taken place over the past few decades, mainly due to advances in molecular techniques such as 16S rRNA and whole genome sequencing (WGS). New genera and species have been added, and existing genera and species have been reclassified or renamed. A major role of the clinical microbiological laboratories (CMLs) is the accurate identification (ID) and appropriate antimicrobial susceptibility testing (AST) for clinically important bacteria, and rapid reporting and communication of the same to the clinician. Taxonomic changes in anaerobic bacteria could potentially affect the choice of appropriate antimicrobial agents and the antimicrobial breakpoints to use. Furthermore, current taxonomy is important to prevent treatment failures of emerging pathogenic anaerobes with antimicrobial resistance. Therefore, CMLs should periodically update themselves on the changes in the taxonomy of anaerobic bacteria and suitably inform clinicians of these changes for optimum patient care. This article presents an update on the taxonomy of clinically important anaerobic bacteria, together with the previous names or synonyms. This taxonomy update can help guide antimicrobial therapy for anaerobic bacterial infections and prevent treatment failure and can be a useful tool for both CMLs and clinicians.

Development and Biogenesis of Peroxisome in Oil-seed Plants (지방 저장 식물의 퍼옥시좀 생성과 발달)

  • Dae-Jae Kim
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.651-662
    • /
    • 2023
  • Peroxisomes, known as microbodies, are a class of morphologically similar subcellular organelles commonly found in most eukaryotic cells. They are 0.2~1.8 ㎛ in diameter and are bound by a single membrane. The matrix is usually finely granular, but occasionally crystalline or fibrillary inclusions are observed. They characteristically contain hydrogen peroxide (H2O2) generating oxidases and contain the enzyme catalase, thus confining the metabolism of the poisonous H2O2 within these organelles. Therefore, the eukaryotic organelles are greatly dynamic both in morphology and metabolism. Plant peroxisomes, in particular, are associated with numerous metabolic processes, including β-oxidation, the glyoxylate cycle and photorespiration. Furthermore, plant peroxisomes are involved in development, along with responses to stresses such as the synthesis of important phytohormones of auxins, salicylic acid and jasmonic acids. In the past few decades substantial progress has been made in the study of peroxisome biogenesis in eukaryotic organisms, mainly in animals and yeasts. Advancement of sophisticated techniques in molecular biology and widening of the range of genomic applications have led to the identification of most peroxisomal genes and proteins (peroxins, PEXs). Furthermore, recent applications of proteome study have produced fundamental information on biogenesis in plant peroxisomes, together with improving our understanding of peroxisomal protein targeting, regulation, and degradation. Nonetheless, despite this progress in peroxisome development, much remains to be explained about how peroxisomes originate from the endoplasmic reticulum (ER), then assemble and divide. Peroxisomes perform dynamic roles in many phases of plant development, and in this review, we focus on the latest progress in furthering our understanding of plant peroxisome functions, biogenesis, and dynamics.

Effect of Ethane 1,2-Dimethane Sulfonate (EDS) on the Accessory Sex Organs in Adult Rats : A Histological Study (Ethane 1,2-Dimethane Sulfonate(EDS)가 성체 흰쥐의 부속 생식기관에 미치는 효과 : 조직학적 연구)

  • Lee, Won-Yong;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.13 no.2
    • /
    • pp.105-114
    • /
    • 2009
  • Ethane 1,2-dimethane sulfonate (EDS) is a well-known alkylating agent used as selective Leydig cell (LC) toxicant to create a testicular dysfunction model. Previous studies including our own clearly demonstrated the dramatic weight loss of the androgen dependent accessory sex organs such as epididymis, seminal vesicle and prostate gland in this 'LC knock-out' rats. The present study was performed to evaluate the effect of EDS administration on histological changes of the epididymis, seminal vesicle and prostate in adult rats. Adult male Sprague-Dawley rats (350$\sim$400 g B.W.) were injected with a single dose of EDS (75 mg/kg, i.p.) and sacrificed on weeks 0, 1, 2, 3, 4, 5, 6 and 7. Tissue weights (testis, epididymis, seminal vesicle and prostate gland) were measured. The histological changes of tissue were observed by a light microscopy using hematoxylin & eosin staining. Weights of the reproductive and accessory organs progressively declined after the EDS treatments (weeks 1, 2 and 3). After this, the decrease was stopped, then gradually returned to the normal levels. There was a partial (about 60%) recovery of the epididymis weight during weeks $6{\sim}7$. The cross section of epididymis revealed an increase in thickness of the epithelium during weeks $1{\sim}3$. In contrast, considerable reduction of epithelial thickness in seminal vesicle was observed during same period. Similarly, a reduction in thickness of prostate epithelial layer was found during weeks $1{\sim}3$, then it was back to normal thickness after week 4. Taken together, the present study demonstrated that the temporally induced androgen-deficiency by EDS treatment could result the prominent alterations in histology of the accessory sex organs. Further studies on the physiological and molecular regulation of these androgen-sensitive organs using EDS model will be helpful to understand the normal and pathological development and differentiation mechanism of these organs.

  • PDF

On the Secretion and Functions of Equine Chorionic Gonadotropin (말의 융모성 성선자극 호르몬의 분비와 기능)

  • Min, K.S.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.2
    • /
    • pp.125-142
    • /
    • 2000
  • 13). Analysis of a purified preparation of eCG revealed that its $\beta$ -subunit consists of 149 amino acids, which was confirmed by the molecular cloning of its cDNA. There seem to be at least four to six, or even as many as 11, O-glycosylation sites on the extended C-tenninal region of the eCG $\beta$-subunit. Interestingly, eCG is a unique member of this family, as it appear to be a single molecule that possesses both LH- and FSH-like activities. Using the cDNA prepared from mRNA extracted from equine placental and pituitary tissues, we cloned the cDNA of eCG $\alpha$- and $\beta$ -subunits and eFSH $\beta$ -subunit. The mRNA expression of each subunit seems to be independently regulated, which may account for differences in the quantities of $\alpha$ - and $\beta$ -subunits in the placenta and pituitary. Thus, eCG is a distinct molecule from the view points of its biological function and glycoresidue structures. Recombinant eCGs including the mutants which lack oligosaccharides will be useful tools for analyzing the structure-function relationships of gonadotropins in the horse as well as other species. Similar experiments will also clarify the proposed structure and biological functions for the glycoprotein hormones. These experimental are now possible, and hopefully a resolution of the existing controversy will be forthcoming in the near future.

  • PDF

The Production Structure of Genetic Information in South Korea (한국의 유전적 정보 생산 구조)

  • Yi Cheong-Ho
    • Journal of Science and Technology Studies
    • /
    • v.5 no.1 s.9
    • /
    • pp.55-92
    • /
    • 2005
  • The factors contributing to the formation of an important scientific concept in South Korea and its circulation in the society are the scientific knowledge that had been already formed, matured, and established in the U.S.A, Europe and Japan and has been introduced into Korea, and the institutions that have been formed during the recent modernization in South Korea. The concept of 'genetic information' cannot be an exception in this context. The concept of genetic information is the one that has been extended and intensified by the genomics and bioinformatics formed and matured through the Human Genome Projects from the former concept of inheritance or heredity within the framework of classical and molecular genetics. The purpose of this study was to find out 'how the production structure of genetic information in South Korea has been formed', under the perspective of the conceptual, epistemic, and institutional holisticity or integratedness in the concept and knowledge production structure idealized in Western advanced nations. The discourse of genetic engineering popular in the mid 1980's in South Korea has catalyzed the development of molecular biology. However, the institutional balance that had been established for the biochemistry departments in Natural Science College and Medical College was not formed between the genetic engineering and genetics departments in South Korea. Therefore, they were unable to achieve the more integrative and macro-level disciplinary impact on life sciences, largely due to institutional lack of the capable (human) genetics departments in some leading Korean colleges of Medicine. In genomics, the cutting-edge reprogramming and restructuring of the traditional genetics in the West, South Korea has not invested, even meagerly, in the infrastructure, fund, and research and development (R & D) for the Basic or First Phase of the research trajectory in the Human Genome Project. Without a minimal Basic Phase, the genomics research and development in Korea has been running more or less for the Advanced or Second Phase. Bioinformatics has started developing in Korea under a narrow perspective which regards it as a mere sub-discipline of information technology (IT). Having developed itself in parallel with genomics, bioinformatics contains its own unique logics and contents that can be both directly and indirectly connected to the information science and technology. As a result, bioinformatics reveals a defect in respect of being synergistically integrated into genetics and life sciences in Korea. Owing to the structural problem in the production, genetic information appears to be produced in a fragmented pattern in the Korean society since its fundamental base is weak and thin. A good example of the conceptual and institutional fragmentedness is that 'the genetics of individual identification' is not a normal integrated part of the Korean genetics, but a scientific practice exercised in the departments of legal medicine in a few Medical Colleges. And the environment contributing to the production structure of genetic information in South Korea today comprises 'sangmyung gonghak'(or life engineering) discourse and non-governmental organization movement.

  • PDF

Phylogeny and Conservation of the Genus Bupleurum in Northeast Asia with Special Reference to B. latissimum, Endemic to Ulleung Island in Korea (울릉도 고유종인 섬시호를 중심으로 동북아시아 시호속 식물의 계통과 보전생물학)

  • Ahn, Jin-Kab;Lee, Hee-Cheon;Kim, Chul-Hwan;Lim, Dong-Ok;Sun, Byooog-Yoon
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.1
    • /
    • pp.18-34
    • /
    • 2008
  • Based on external morphology, each of five species can be classified into three groups: 1) B. falcatum group (B. falcatum, B. scorzonerifolium), 2) B. euphorbioides group (B. euphorbioides) and 3) B. longiradiatum group (B. longiradiatum, B. latissimum). B. falcatum group has cauline leaves linear or lanceolate in shape and attenuate at base and not surrounding the stem. In contrast, B. longiradiatum group and B. euphorbioides group have cauline leaves ovate, lanceolate or panduriform in shape and auriculate or cordate at base and completely surrounding the stem. The inflorescence is basically compound umbels terminated at the apex of stem. But B. euphorbioides group is small in size and pedicels are rather short and the number of the pedicel is ca. 20. On the other hand, B. longiradiatum and B. falcatum groups are large in size and their pedicels are long and the number of the pedicel is around 10. The pore of pollen aperture of B. longiradiatum and B. latissimum is partially projected or not while those of B. falcatum group and B. euphorbioides is usually remarkably projected. The number of somatic chromosomes was counted as 2n=20 in B. falcatum, 2n=12 in B. scorzonerifolium and B. longiradiatum, and 2n=16 in B. euphorbioides and B. latissimum. Although chromosome numbers of B. euphorbioides and B. latissimum are the same, the two species are not likely to relate because the karyotypes of the two species are different from each other. Based on these observations, it can be concluded that B. latissimum is most closely related to B. longiradiatum. However, molecular data indicated that the species is probably related to B. bicaule distributed in central Siberia. In terms of conservation of B. latissimum, overexploitation by human and grazing by goat are most threatened factors.

Analysis of rpoB Gene in Rifampin-Resistant M. Tuberculosis by Direct Sequencing and Line Probe Assay (염기서열결정과 Line Probe 분석법에 의한 Rifampin내성 결핵균의 rpoB 유전자 분석)

  • Lee, Min-Ki;Kim, Yun-Seong;Lee, Hyo-Jin;Cheon, Du-Su;Yun, Sang-Myung;Park, Sam-Seok;Kim, Cheol-Min;Park, Soon-Kew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.2
    • /
    • pp.251-263
    • /
    • 1997
  • Background : The emergence of multidrug-resistant strains of Mycobacterium tuberculosis presents a significant challange to the treatment and control of tuberculosis, and there is an urgent need to understand the mechanisms by which strains acquire multidrug resistance. Recent advances in molecular methods for the detection of M. tuberculosis genetic targets have approached the sensitivity of culture. Furthermore the prospect of determining resistance in mycobacteria at the nucleic acid level particulary to first-line drugs like rifampin, isoniazid has provided a glimps of the next generation of sensitivity test for M. tuberculosis. Previous studies in RMP resistant M. tuberculosis have shown that mutation in $\beta$subunit of RNA polymerase is main mechanism of resistance. Method : In this study, rpoB gene for the $\beta$subunit of RNA polymerase from M. tuberculosis of 42 cultured samples (32 were RMP resistant and 10 were sensitive cases) were isolated and characterised the mutations. Direct sequencing data were compared with the results of INNO-LiPA Line Probe Assay (LiPA, Innogenetics, Belgium), commercial RMP resistance detecting kit using reverse hybridization method. Results : All of the RMP resistant samples were revealed the presence of mutation by LiPA. In 22 samples (68.8%) out of 32 RMP resistant cases, the mutation types were confirmed by the positive signal at one of 4 mutation bands in the strip. The most frequent type was R5 (S531L) which were 17 cases (77.3%). Results of direct sequencing were identified the exact characteristics of 8 mutations which were not confirmed by LiPA. S522W type point mutation and 9 base pair deletion at codon 513~515 were new identified mutations for the first time. Conclusion : Mutations in rpoB gene is the main mechanism of RMP resistance in M. tuberculosis and LiPA is a very useful diagnostic tool for the early diagnosis of RMP resistance in M. tuberculosis.

  • PDF

Effects of Solidago virga-aurea var. gigantea Miq. Root Extracts on the Activity and Differentiation of MC3T3- E1 Osteoblastic Cell (미역취(Solidago virga-aurea var. gigantea Miq.) 뿌리 추출물이 MC3T3-E1 조골세포의 활성과 분화에 미치는 영향)

  • Park, Jung-Hyun;Lee, Ji-Won;Kim, Hyun-Jeong;Lee, In-Seon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.7
    • /
    • pp.929-936
    • /
    • 2005
  • The purpose of this study was to examine the ability of alkaline phosphatase (ALP) synthesis of MC3T3-E1 cells when above edible sources, Solidago virga-aurea var. gigantea Miq. root (SVR) extracts, were supplimented. MC3T3-E1 cells were cultured with $\alpha-MEM$(vehicle control), dexamethasone and genestein (positive control), and SVR extracts for 27 days. The effects of SVR MeOH extracts and its fractions on cell proliferation were measured by MTT assay. At 10, 100${\mu}g/mL$ of SVR methanol extract treated, that were elevated of cell proliferation to 140 and $120\%$ via vehicle control, respectively. And then ALP synthesis was measured by spectrophotometer for enzyme activity and by naphthol AS-BI staining for morphometry at 3, 9, 18, and 27th day. As the results, every extracts and fractions were promoted ALP activity by time course at 1, 10, 100${\mu}g/mL$, except n-hexane and chloroform fractions. Remarkably, the MeOH extracts were increased ALP activity more than 4.4 times compared with vehicle control, 2.2 times via positive control at 27th day (p<0.05). The SVR MeOH extracts treated cells, especially at a concentration of 10${\mu}g/mL$, showed remarkably higher than vehicle-treated control cells of mineralization which were checked by Alizarin red staining. These results indicate that SVR methanol extract have an induction ability of proliferation and differentiation on osteoblast.