• Title/Summary/Keyword: 분위 회귀 모형

Search Result 45, Processing Time 0.029 seconds

A Study on Estimation of Soil Moisture Multiple Quantile Regression Model Using Conditional Merging and MODIS Land Surface Temperature Data (조건부 합성기법과 MODIS LST를 활용한 토양수분 다중분위회귀모형 산정 연구)

  • Jung, Chung Gil;Lee, Ji Wan;Kim, Da Rae;Kim, Se Hun;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.23-23
    • /
    • 2018
  • 본 연구에서는 다중분위회귀분석모형(Multiple Quantile Regression Model, MQRM)과 MODIS(MODerate resolution Imaging Spectroradiometer) LST (Land Surface Temperature) 자료를 이용하여 전국 공간토양수분을 산정하였다. 공간토양수분을 산정하기 위한 과정은 크게 두가지로 구분된다. 첫 번째로 기존의 MODIS LST 자료를 조건부 합성 보정기법을 적용하여 실측 LST 자료와 비교하여 위성 LST 자료가 갖고 있는 오차를 보정하였다. 그 결과, 조건부 합성 보정기법을 적용하기전 전국 71개 지상관측지점에서 관측한 실측 LST와 MODIS LST의 $R^2$는 전체 평균 0.70으로 어는정도 유의성 있는 상관관계를 나타냈으나 조건부 합성 보정기법을 적용한 후 실측 LST와 MODIS LST의 $R^2$는 전체 평균 0.92로 상당히 크게 향상됨을 알 수 있었다. 두 번째로 보정된 MODIS LST를 이용하여 다중분위회귀분석 모형을 개발하고 토양수분을 예측하는 단계로 입력자료로 위성영상 자료와 관측자료를 융합하여 사용하였다. 위성영상 자료로는 보정된 MODIS LST와 MODIS NDV를 구축하였고 일단위 강수량 및 일조시간의 기상자료는 기상청으로부터 전국 71개 지점에 대해 구축하여 IDW 공간보간기법을 이용한 공간자료로 구축하였다. 토양수분 결과를 비교하기 위한 관측 토양수분은 자동농업기상관측(Automated Agriculture Observing System, AAOS)지점에서 2013년 1월부터 2015년 12월까지의 실측 일단위 토양수분 자료를 구축하여 사용하였다. 다중분위회귀분석 모형은 LST 인자를 중심으로 각각의 분위(0.05, 0.25, 0.5, 0.75, 0.95)에 해당되는 값의 회귀식을 NDVI, 강수 입력자료를 독립인자로서 조합하여 계절 및 토성에 따른 총 80개의 회귀식을 산정하였다. 관측 토양수분과 모의 토양수분을 비교한 결과 $R^2$가 0.70 (철원), 0.90 (춘천), 0.85 (수원), 0.65 (서산), 0.78 (청주), 0.82 (전주), 0.62 (순천), 0.63 (진주), 0.78 (보성)로 높은 상관성을 보였다. 본 연구에서는 다중분위회귀 모형의 성능을 검증하기 위해 기존의 다중선형회귀모형의 결과와 비교하여 크게 개선됨을 나타냈다.

  • PDF

Influence Comparison of Customer Satisfaction Factor using Quantile Regression Model (분위회귀모형을 이용한 고객만족도 요인의 영향력 비교)

  • Kim, Seong-Yoon;Kim, Yong-Tae;Lee, Sang-Jun
    • Journal of Digital Convergence
    • /
    • v.13 no.6
    • /
    • pp.125-132
    • /
    • 2015
  • It is current situation that a number of issues are being raised how the weight is calculated from customer satisfaction survey. This study investigated how the weight of satisfaction for each quantile is different by comparing ordinary least square regression model to quantile regression model and carried out bootstrap verification to find the influence difference of regression coefficient for each quantile. As the analysis result of using R(Quantreg package) that is open software, it appeared that there was the influence size of satisfaction factor along study result and quantile and there was the significant difference statistically regarding regression coefficient for each quantile. So, to use quantile regression model that offers the influence of satisfaction factor for each customer group along satisfaction level would contribute to plan the quantitative convergence policy for customer satisfaction.

A Study on the User Satisfaction of Demand Response Transport(DRT) by Quantile Regression Analysis (분위회귀분석에 의한 수요응답형교통 이용자 만족도 분석)

  • Jang, Tae Youn;Han, Woo Jin;Kim, Jeong Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.3
    • /
    • pp.118-128
    • /
    • 2016
  • As the rural areas have experienced the population reduction and the aging, the service level of public transit decreases. This study analyzes the effecting factor to user satisfaction of demand response transport(DRT) as alternative to rural public transit by the quantile regression that aims at estimating either the conditional median or other quantiles of the response variable. Jeonbuk Province tested DRT operations in Dongsang of Wanju County and Sannae of Jeongup City each in 2015. The user DRT satisfaction of Wanju was higher than one of Jeongup in basic statistics analysis. The difference in satisfaction between higher quantile and lower quntile of Wanju is smaller than one of Jeongupy as a result of quantile regression analysis. Also, Wanju DRT continues the second test operation of DRT as satisfaction from Ordinary Least Squares(OLS) close to higher satisfaction quantile.

Analysis of AI interview data using unified non-crossing multiple quantile regression tree model (통합 비교차 다중 분위수회귀나무 모형을 활용한 AI 면접체계 자료 분석)

  • Kim, Jaeoh;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.753-762
    • /
    • 2020
  • With an increasing interest in integrating artificial intelligence (AI) into interview processes, the Republic of Korea (ROK) army is trying to lead and analyze AI-powered interview platform. This study is to analyze the AI interview data using a unified non-crossing multiple quantile tree (UNQRT) model. Compared to the UNQRT, the existing models, such as quantile regression and quantile regression tree model (QRT), are inadequate for the analysis of AI interview data. Specially, the linearity assumption of the quantile regression is overly strong for the aforementioned application. While the QRT model seems to be applicable by relaxing the linearity assumption, it suffers from crossing problems among estimated quantile functions and leads to an uninterpretable model. The UNQRT circumvents the crossing problem of quantile functions by simultaneously estimating multiple quantile functions with a non-crossing constraint and is robust from extreme quantiles. Furthermore, the single tree construction from the UNQRT leads to an interpretable model compared to the QRT model. In this study, by using the UNQRT, we explored the relationship between the results of the Army AI interview system and the existing personnel data to derive meaningful results.

Development of Bayesian Multiple Quantile Regression model and Estimation fo Future Design Rainfall with Increased Temperature (베이지안 다중분위회귀분석모형 개발 및 온도상승에 따른 미래 확률강수량 전망)

  • Uranchimeg, Sumiya;Kim, Jin-Guk;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.22-22
    • /
    • 2019
  • 최근 전 세계적으로 급증하는 기후변화의 영향으로 인해 강우량 증가에 따른 이상홍수 발생 및 댐 여유고 부족 등 다양한 위험인자가 노출되고 있다. 이러한 예상치 못한 이상홍수는 실제 거주하고 있는 사람들을 위협할 수 있으며, 하천 범람으로 인해 2차 3차 피해가 일어날 가능성이 존재하고 있다. 이에 다양한 자연재해로부터 인명 및 재산 피해를 방지 및 저감하기 위한 목적으로 다양한 수공구조물이 존재하며, 수자원 관리계획 수립의 목적에 따라 다양한 강수량이 활용되고 있다. 특히, 지구온난화에 따른 기후변화 영향을 고려한 연최대 강수량 및 확률강수량 산정이 필요한 시점이며, 온도변화에 따른 증기압 계산식인 Clausius-Clapeyron 관계에 따르면 대기 온도가 $1^{\circ}C$ 상승할 때 대기수분량이 6~7% 증가하여 평균 온도상승에 따라 극치강수량 발생 잠재력이 향상 될 것으로 전망되고 있다. 본 연구에서는 온도상승에 따른 극치강수량의 변화를 베이지안 다중분위회귀분석모형을 통해 산정하여 CORDEX 온도자료 기반의 미래 극치강수량을 전망하였다. 본 연구결과 100년 이상 빈도의 강수량은 온도상승에 따라 급격히 증가하는 추세를 확인하였으며, 2100년까지 온도상승을 고려한 최대 극치강수량은 1500mm를 넘을 가능성을 확인하였다.

  • PDF

Factors affecting regional population of Korea using Bayesian quantile regression (베이지안 분위회귀모형을 이용한 지역인구에 영향을 미치는 요인분석)

  • Kim, Minyoung;Oh, Man-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.823-835
    • /
    • 2021
  • Identification of factors influencing regional population is critical for establishing government's population policies as well as for improving residents' social, economic and cultural well-being in the region. In this study we analysed the data from 2019 Population Housing Survey in Korea to identify the factors affecting the population size in each of the three regions: Seoul, metropolitan cities, and provincial regions. We applied a Bayesian quantile regression to account for asymmetry and heteroscedasticity of data. The analysis results showed that the effects of factors vary greatly between the three regions of Seoul, metropolitan cities, and provincial regions as well as between sub regions within the same region. These results suggest that population-related variables have very heterogeneous characteristics from region to region and therefore it is important to establish customized population policies that suit regional characteristics rather than uniform population policies that apply to every region.

Adaptive L-estimation for regression slope under asymmetric error distributions (비대칭 오차모형하에서의 회귀기울기에 대한 적합된 L-추정법)

  • 한상문
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.1
    • /
    • pp.79-93
    • /
    • 1993
  • We consider adaptive L-estimation of estimating slope parameter in regression model. The proposed estimator is simple extension of trimmed least squares estimator proposed by ruppert and carroll. The efficiency of the proposed estimator is especially well compared with usual least squares estimator, least absolute value estimator, and M-estimators designed for asymmetric distributions under asymmetric error distributions.

  • PDF

Glass ceiling in arts and culture professionals: Between J and R industries (문화예술분야 전문인력에 대한 유리천장효과 분석: J산업과 R산업 중심으로)

  • Chan, Jong-Sub;Heo, Shik
    • Review of Culture and Economy
    • /
    • v.21 no.2
    • /
    • pp.3-28
    • /
    • 2018
  • This study focuses on analyzing the glass ceiling effect in arts and culture professionals through the quintile decomposition applied to the RIF unconditional quantile regression and Oaxaca-Blinder decomposition technique. From the industrial viewpoint, we divide arts and culture professionals into cultural contents professionals(large category J industry) and arts professionals(large category R industry). For our analysis, we employ the pooling data of 'Wage Structure Survey' from 2009 to 2016. Our results are summarized as follows. First, as OLS wage decomposition showed that the gender wage gap among the arts professionals was lower than cultural contents professionals, but the discrimination portion of total gender wage gap was larger. Second, from quintile regression decompositions, the glass ceiling effects of two types of professionals showed different results. Cultural contents sector was observed with the "steady glass ceiling effect" as the portion of the discrimination was continuously increased, while the arts sector was observed with the "limited glass ceiling effect" as the discrimination had drastically increased in the 80s and 90s.

Variable selection with quantile regression tree (분위수 회귀나무를 이용한 변수선택 방법 연구)

  • Chang, Youngjae
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.6
    • /
    • pp.1095-1106
    • /
    • 2016
  • The quantile regression method proposed by Koenker et al. (1978) focuses on conditional quantiles given by independent variables, and analyzes the relationship between response variable and independent variables at the given quantile. Considering the linear programming used for the estimation of quantile regression coefficients, the model fitting job might be difficult when large data are introduced for analysis. Therefore, dimension reduction (or variable selection) could be a good solution for the quantile regression of large data sets. Regression tree methods are applied to a variable selection for quantile regression in this paper. Real data of Korea Baseball Organization (KBO) players are analyzed following the variable selection approach based on the regression tree. Analysis result shows that a few important variables are selected, which are also meaningful for the given quantiles of salary data of the baseball players.

Heterogeneity in the Effects of FDI on Firms' Productivity in South Korea: A Quantile Regression Approach (외국인투자가 국내기업의 생산성에 미친 효과: 분위회귀 접근법)

  • Kim, Jaehoon;Chun, Bong Geul
    • KDI Journal of Economic Policy
    • /
    • v.36 no.1
    • /
    • pp.1-42
    • /
    • 2014
  • This study analyzes how heterogeneous across firms' productivity level the effects of foreign direct investment (FDI) on the productivity of firms in a host country are. The study uses firm level data over 2000~2009 in South Korea and takes a quantile regression approach to estimate FDI's heterogeneous effects on the invested firm ('direct effects') and other domestic firms in the industry to which the invested firm belongs ('intra-industry spillover effects'). Major empirical results are as follows. In manufacturing sector, FDI has positive and statistically significant direct effects on the invested firm. In addition, the higher the quantiles of firms' productivity level are, the larger the positive productivity effects are. FDI also has positive and statistically significant intra-industry spillover effects on domestic firms in low quantiles of productivity while it has negative and statistically significant or insignificant spillover effects on those in high productivity quantiles. In service sector, on the other hand, Sufficient evidence is not found that FDI has statistically significant direct effects or intra-industry spillover effects. Taken together, the study suggests that FDI has heterogeneous effects on the productivity of firms in host country, depending on the firms' productivity level and sector.

  • PDF