• 제목/요약/키워드: 분위수 함수

검색결과 16건 처리시간 0.025초

비대칭 라플라스 분포를 이용한 분위수 회귀 (Quantile regression using asymmetric Laplace distribution)

  • 박혜정
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권6호
    • /
    • pp.1093-1101
    • /
    • 2009
  • 분위수 회귀모형은 확률변수들 사이에 확률적인 관계구조를 포함한 함수 모형을 좀 더 완벽하게 추정하도록 제공한다. 본 논문에서는 함수 추정에 로버스트하다고 알려져 있는 서포트벡터기계 기법과 이중벌칙커널기계를 이용하여 분위수 회귀모형을 추정하고자 한다. 이중벌칙커널기계는 고차원의 입력변수에 대한 분위수 회귀가 요구될 때 분위수 회귀모형을 잘 추정한다고 알려져 있다. 또한 본 논문에서는 광범위한 형태의 분위수 회귀모형 추정을 위해서 정규분포보다 비대칭 라플라스 분포를 이용한다. 본 논문에서 제안한 모형은 분위수 회귀모형 추정을 위해서 서포트벡터기계 기법에 이중벌칙커널기계를 이용하여 각각의 평균과 분산을 동시에 추정한다. 평균과 분산함수 추정을 위해 사용된 커널함수의 모수들은 최적의 값을 찾기 위해 일반화근사 교차타당성을 이용한다.

  • PDF

커널 제약식을 이용한 다중 비교차 분위수 함수의 순차적 추정법 (Stepwise Estimation for Multiple Non-Crossing Quantile Regression using Kernel Constraints)

  • 방성완;전명식;조형준
    • 응용통계연구
    • /
    • 제26권6호
    • /
    • pp.915-922
    • /
    • 2013
  • 분위수 회귀는 반응변수의 조건부 분위수 함수를 추정함으로써 반응변수와 예측변수의 관계에 대한 포괄적인 정보를 제공한다. 그러나 여러 개의 분위수 함수를 개별적으로 추정하게 되면 이들이 서로 교차할 가능성이 있으며, 이러한 분위수 함수의 교차(quantile crossing) 현상 분위수의 이론적 기본 특성에 위배된다. 본 논문에서는 다중 비교차 분위수 함수의 추정을 위해 커널 계수에 제약식을 부여하는 순차적 추정법을 제안하였으며, 모의실험을 통해 제안한 방법론의 효율적인 성능과 유용성을 확인하였다.

비교차 제약식을 이용한 다중 선형 분위수 회귀모형에 관한 비교연구 (A comparison study of multiple linear quantile regression using non-crossing constraints)

  • 방성완;신승준
    • 응용통계연구
    • /
    • 제29권5호
    • /
    • pp.773-786
    • /
    • 2016
  • 분위수 회귀는 반응변수의 조건부 분위수 함수를 추정함으로써 반응변수와 예측변수의 관계에 대한 포괄적인 정보를 제공한다. 그러나 여러 개의 분위수 함수를 개별적으로 추정하게 되면 이들이 서로 교차할 가능성이 있으며, 이러한 분위수 함수의 교차(quantile crossing) 현상 분위수의 이론적 기본 특성에 위배된다. 본 논문에서는 다중 비교차 분위수 함수의 추정의 대표적인 방법들의 특성을 적합식과 계산 알고리즘의 측면에서 살펴보고, 모의실험과 실제 자료 분석을 통해 그 성능을 비교하였다.

대용량 자료의 분석을 위한 분할정복 커널 분위수 회귀모형 (Divide and conquer kernel quantile regression for massive dataset)

  • 방성완;김재오
    • 응용통계연구
    • /
    • 제33권5호
    • /
    • pp.569-578
    • /
    • 2020
  • 분위수 회귀모형은 반응변수의 조건부 분위수 함수를 추정함으로써 반응변수와 예측변수의 관계에 대한 포괄적인 정보를 제공한다. 특히 커널 분위수 회귀모형은 비선형 관계식을 고려하기 위하여 양정치 커널함수(kernel function)에 의해 만들어지는 재생 커널 힐버트 공간(reproducing kernel Hilbert space)에서 비선형 조건부 분위수 함수를 추정한다. 그러나 KQR은 이차계획법으로 공식화되어 많은 계산비용을 필요로 하므로 컴퓨터 메모리 능력의 제한으로 대용량 자료의 분석은 불가능하다. 이러한 문제점을 해결하기 위하여 본 논문에서는 분할정복(divide and conquer) 알고리즘을 활용한 KQR 추정법(DC-KQR)을 제안한다. DC-KQR은 먼저 전체 훈련자료를 몇 개의 부분집합으로 무작위로 분할(divide)한 후, 각각의 부분집합에 대하여 KQR 분위수 함수를 추정하고 이들의 산술 평균을 이용하여 최종적인 추정량으로 통합(conquer)하는 기법이다. 본 논문에서는 모의실험과 실제자료 분석을 통해 제안한 DC-KQR의 효율적인 성능과 활용 가능성을 확인하였다.

복합 분위수 회귀에 대한 붓스트랩 방법의 응용 (Bootstrapping Composite Quantile Regression)

  • 서강민;방성완;전명식
    • 응용통계연구
    • /
    • 제25권2호
    • /
    • pp.341-350
    • /
    • 2012
  • 선형 회귀모형에서 오차항들이 서로 독립이고 동일한 분포를 따른다고 가정할 경우, (회귀계수의 강건한 추정을 위하여) 모든 분위수 함수의 회귀계수가 동일한 값을 갖는다는 사실에 근거한 복합 분위수 회귀(composite quantile regression) 방법을 고려할 수 있다. 본 논문에서는 복합 분위수 회귀에서 사용되는 분위수의 개수를 선택하기 위해 붓스트랩 방법의 가능성을 검토하였다. 또한, 분위수 회귀와 복합 분위수 회귀의 성능을 비교하기 위해 붓스트랩 방법을 이용하여 신뢰구간을 구축하고, 이들의 포함확률과 평균길이를 비교하였다. 이러한 모의실험을 통하여 복합 분위수 회귀의 우월성과 통계적 추론에 있어서 붓스트랩 방법의 유용성을 확인하였다.

통합 비교차 다중 분위수회귀나무 모형을 활용한 AI 면접체계 자료 분석 (Analysis of AI interview data using unified non-crossing multiple quantile regression tree model)

  • 김재오;방성완
    • 응용통계연구
    • /
    • 제33권6호
    • /
    • pp.753-762
    • /
    • 2020
  • 본 연구는 대한민국 육군이 선도적으로 도입하고자 노력하고 있는 AI 면접체계의 자료를 통합 비교차 다중 분위수 회귀나무 모형(unified non-crossing multiple quantile tree; UNQRT)을 활용하여 분석한 것이다. 분위수 회귀가 일반적인 선형회귀에 비하여 많은 장점을 가지지만, 선형성 가정은 여전히 많은 현실 문제해결에 있어 지나치게 강한 가정이다. 선형성을 완화한 모형의 하나인 기존 나무모형 기반의 분위수 회귀는 추정된 분위수 함수별로 교차하는 문제와 분위수별로 나무모형을 제시하여 해석력을 저하시키는 문제가 있다. 통합 비교차 다중 분위수회귀나무 모형은 비교차 제약식을 부여한 상태로 다중 분위수 함수를 동시에 추정함으로서 분위수 함수의 교차 문제를 해결하며, 극단 분위수에서 안정된 결과를 기대할 수 있고, 하나의 통합된 나무모형을 제시하여 우수한 해석력이 있다. 본 연구에서는 통합 비교차 다중 분위수회귀나무 모형을 활용하여 육군 AI 면접체계의 결과와 기존 인사자료간 관계를 충분히 탐색하여 의미있는 다양한 결과를 도출하였다.

벌점화 분위수 회귀나무모형에 대한 연구 (Penalized quantile regression tree)

  • 김재오;조형준;방성완
    • 응용통계연구
    • /
    • 제29권7호
    • /
    • pp.1361-1371
    • /
    • 2016
  • 분위수 회귀모형은 설명변수가 반응변수의 조건부 분위수 함수에 어떻게 관계되는지 탐색함으로서 많은 유용한 정보를 제공한다. 그러나 설명변수와 반응변수가 비선형 관계를 갖는다면 선형형태를 가정하는 전통적인 분위수 회귀모형은 적합하지 않다. 또한 고차원 자료 또는 설명변수간 상관관계가 높은 자료에 대해서 변수선택의 방법이 필요하다. 이러한 이유로 본 연구에서는 벌점화 분위수 회귀나무모형을 제안하였다. 한편 제안한 방법의 분할규칙은 과도한 계산시간과 분할변수 선택편향 문제를 극복한 잔차 분석을 기반으로 하였다. 본 연구에서는 모의실험과 실증 예제를 통해 제안한 방법의 우수한 성능과 유용성을 확인하였다.

조건부 분위수의 중도절단을 고려한 비모수적 추정 (Nonparametric estimation of conditional quantile with censored data)

  • 김은영;최혜미
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권2호
    • /
    • pp.211-222
    • /
    • 2013
  • 중도절단된 자료가 있을 경우 조건부 분위수함수를 비모수적으로 추정하는 문제에 대하여 다루고 있다. 역함수에 근거한 방법인 Yu와 Jones (1998)에 의해 제안된 중복커널기법 추정량과 Lee 등(2006)의 국소로지스틱기법 추정량을 중도절단된 자료가 있는 경우로 수정하여 새롭게 제안하고, 이들을 기존의 Koenker와 Bassett (1978)의 점검함수에 근거한 커널평활 추정량들과 모의실험을 통해 비교해 보았다. 모의실험을 통하여 역함수에 근거한 추정량들은 조건부 분포가 대칭인 모형에서, 점검함수기법 추정량들은 한쪽으로 치우친 분포인 경우에 조건부 분위수를 대체로 더 잘 추정하고 있음을 알 수 있었다.

국소 선형 복합 분위수 회귀에서의 평활계수 선택 (Selection of bandwidth for local linear composite quantile regression smoothing)

  • 전명식;강종경;방성완
    • 응용통계연구
    • /
    • 제30권5호
    • /
    • pp.733-745
    • /
    • 2017
  • 국소복합분위수 회귀모형을 활용한 비모수적 함수 추정방법이 높은 효율성과 더불어 활발히 연구되고 있다. 이러한 추정과정에 커널을 사용한 자료 평활방법이 대표적으로 사용되고 있으며, 그 성능은 커널보다는 평활계수의 선택 크게 의존한다. 한편, 회귀함수 추정방법의 성능을 평가하는 기준으로는 통상적으로 $L_2$-노름이 사용되어 평균제곱오차 또는 평균적분제곱오차를 최소화하는 평활계수의 선택에 대한 많은 연구가 진행되어 왔다. 본 논문에서는 국소선형 복합 분위수 회귀방법을 활용한 비모수 회귀모형 추정량의 성능을 결정하는 평활계수 선택의 최적성에 관해 연구하였다. 특히, 여러 장점을 가졌으나 수리적 어려움으로 연구가 미흡한 평균절대오차 및 평균적분절대오차를 최적의 기준으로 삼아 최적의 평활계수를 구하고 그 유일성에 관해 연구하였다. 나아가 기존의 평가기준인 평균제곱오차 및 평균적분제곱오차를 사용한 선택과의 관계를 파악하고 그 성능을 비교하였다. 이러한 과정에서 다양한 상황에서의 모의실험을 통해 제안한 방법의 특성을 규명하였다.

임의중단모형에서 신뢰도의 비모수적 통합형 추정량

  • 이재만;차영준;장덕준
    • Communications for Statistical Applications and Methods
    • /
    • 제5권3호
    • /
    • pp.685-694
    • /
    • 1998
  • 임상실험이나 신뢰성공학 분야에서 임의 중단자료를 이용한 비모수적 신뢰도 추정량으로 Kaplan-Meier 추정량과 Nelson형 추정량이 많이 사용되고 있다. 그러나 Nelson형 추정량은 평균제곱오차의 관점에서 Kaplan-Meier 추정량보다 추정능력이 우수한 반면 편의는 신뢰도가 감소함에 따라 양의 방향으로 점증하는 소표본 특성을 갖는다. Nelson형 추정량의 이러한 특성 때문에 신뢰도의 함수로 표현되는 잔여수명 분위수함수 등의 추정시에는 평균제곱오차의 관점에서 Kaplan-Meier 추정량보다 추정능력이 떨어짐을 볼 수 있다. 이러한 점을 고려하여 이 두 추정량을 가중평균으로 통합한 새로운 비모수적 신뢰도 추정량을 제안하고 추정량의 특성을 비교 분석하였다.

  • PDF