• Title/Summary/Keyword: 분석정량한계

Search Result 1,154, Processing Time 0.026 seconds

The Effect of Proficiency in Environmental Sample Measurement on Analysis Results (환경시료 측정에서 분석자의 숙련도가 분석결과에 미치는 영향)

  • Yoon, Seok-Pyo;Kang, Seong Min;Son, Yeonmi;Jeon, Gang Weon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.2
    • /
    • pp.25-30
    • /
    • 2021
  • This study investigated how the indicators of quality control are improved by proficiency in the measurement of phosphate concentration. In addition, analysis equipments were to be compared to see if there were any differences in measurements depending on the type of analysis device. In order to find out the effect of the proficiency of the analyst on the analysis results, three analysts measured phosphate concentration seven times in accordance with the Korean water pollution test standards, and met the quality control indices if repeated more than five times. The limit of quantification for phosphate was calculated at 0.02 mg/L. If the analysis devices are different, the absorbance and concentration of the samples near the limit of quantification are statistically significant difference.

Determination of Oxycarboxin Residues in Agricultural Commodities Using HPLC-UVD/MS (HPLC-UVD/MS를 이용한 농산물 중 Oxycarboxin의 분석)

  • Choung, Myoung-Gun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.2
    • /
    • pp.117-124
    • /
    • 2018
  • BACKGROUND: Oxycarboxin(5,6-dihydro-2-methyl-N-phenyl-1,4-oxathiin-3-carboxamide-4,4-dioxide) as oxanthiin is a systemic fungicide commonly used for control of various pathogens in agronomic and horticultural crops. In an effort to develop an analytical method to trace the fungicide, a method using HPLC equipped with UVD/MS was studied. METHODS AND RESULTS: Oxycarboxin was extracted with acetone from hulled rice, soybean, Kimchi cabbage, green pepper, and apple samples. The extract was diluted with saline water, followed by liquid-liquid extraction with methylene chloride. Florisil column chromatography was employed for the purification of the extracts. Oxycarboxin was determined on a Zorbax SB-AQ $C_{18}$ column by HPLC with UVD. Accuracy of the proposed method was validated by the recovery tests from crop samples fortified with oxycarboxin at 3 levels per crop. CONCLUSION: Mean recoveries ranged from 78.3% to 96.1% in five representative agricultural commodities. The coefficients of variation were less than 10%, and limit of quantitation of oxycarboxin was 0.04 mg/kg. A confirmatory technique using LC/MS with selected-ion monitoring was also provided to clearly identify the suspected residue. The method was reproducible and sensitive to determine the residue of oxycarboxin in agricultural commodities.

Simultaneous determination for fungicide prochloraz and its metabolites in animal commodities with GC-ECD after hydrolysis (가수분해 후 GC-ECD를 이용한 축산물 중 살균제 Prochloraz 및 그의 대사물의 동시분석)

  • Park, Ji-Su;Choi, Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.2
    • /
    • pp.153-159
    • /
    • 2020
  • The analytical method was established for simultaneous determination of fungicide prochloraz and its metabolites in several animal commodities using gas chromatography (GC) coupled with electron capture detector (ECD). Samples including beef meat, pork meat, chicken meat, milk, and egg were hydrolyzed with pyridine hydrochloride which converts prochloraz and its metabolites to 2,4,6-trichlorophenol (2,4,6-TCP) because residue definition for prochloraz was 'sum of prochloraz and its metabolites containing the 2,4,6-trichlorophenol moiety, expressed as prochloraz', for compliance with MRLs from animal commodities. Therefore, residual prochloraz was extracted with acetone, decomposed to 2,4,6-TCP, partitioned with dichloromethane, purified with aminopropyl SPE and quantified as 2,4,6-TCP with GC-ECD. The instrumental limit of quantitation and method LOQ (MLOQ) was 0.01 ㎍/mL and 0.02 mg/kg for prochloraz and 0.005 ㎍/mL and 0.01 mg/kg for 2,4,6-TCP, respectively. The linearity of the calibration curve was good with R2 >0.995 in the range of 0.005-0.2 ㎍/mL. Fortification levels of prochloraz were 0.02 mg/kg (MLOQ) and 0.2 mg/kg (10MLOQ) for recovery tests. Overall recoveries of prochloraz were >90% with <10% of coefficient variation (C.V.). This established analytical method was fully validated and could be useful for quantification of prochloraz and its metabolites in animal commodities as official analytical method.

Establishment of Analytical Method for Carpropamid in Agricultural Commodities using HPLC-DAD/MS (HPLC-DAD/MS를 이용한 농산물 중 살균제 Carpropamid의 정밀 잔류분석법 확립)

  • Lee, Hyeri;Choi, Hoon;Kim, Eunhye;Lee, Young Deuk;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.185-194
    • /
    • 2015
  • This study was performed to establish a single residue analytical method for determining fungicide carpropamid residues in various agricultural commodities. Korean cabbage, apple, brown rice and green pepper were selected as representative crops. Samples were homogenized, extracted with acetone and purified by liquid-liquid partition and Florisil column chromatography. Carpropamid residues were analyzed at 220 nm with reversed phase HPLC equipped octylsilyl and octadecylsilyl column and confirmed using mass spectrometry. ILOQ (Instrumental limit of quantitation) of carpropamid was 2 ng and MLOQ (Method LOQ) was 0.02 mg/kg. Mean recoveries from four kinds of crop samples fortified at three levels (MLOQ, 10LOQ, 100LOQ) in triplicate were in the range of 84~112%. Relative standard deviations of the analytical method were all less than 10%, irrespective of crop types.

Analysis of Water Level Change using D-InSAR Technique (D-InSAR 기법을 활용한 하천 수위 변화 분석)

  • Young Jun Bang;MinJi Seo;Hyock Jin Lim;Chi Young Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.409-409
    • /
    • 2023
  • 하천 수위는 합리적인 수자원의 이용 및 관리를 위해 반드시 필요한 수문 자료이다. 우리나라에서는 수위 측정을 위해 유역 내에 관측소를 설치하여 장비 또는 인력을 통해 수위를 측정하고 있다. 하지만, 많은 관측소를 운영하고 관리하기에는 예산과 인력이 소모되는 한계가 있다. 위성 영상을 통한 시계열 분석은 전지구적 모니터링과 관측 분야에 중요한 역할을 수행할 것으로 기대되고 있으며, 특히 위성 영상자료를 활용한 수자원 분야 연구가 활발히 진행되고 있다. 위성 영상을 활용하여 수면적을 감지하고 수위와 유량을 판별하는 많은 연구가 진행되었지만, 하천 하상의 경사와 단면 형태에 따라 수면적이 변하여 정량적인 수위 추정에는 한계가 존재한다. 본 연구에서는 Sentinel-1의 SAR 영상과 InSAR 기법을 통해 낙동강 유역의 홍수 전후의 하천 수위 변화를 분석하였다. Sentinel-1 IW 모드의 Single Look Complex(SLC) 영상 12장과 ESA 영상 처리 툴인 SNAP을 활용하여 VV(Vertical-Vertical) 데이터의 간섭을 통해 센티미터(cm) 단위지표 변화에 따른 수위 변위를 분석하였다. 위성 영상을 통해 추출한 수위 변위와 계측 수위 및 단면 자료의 정합성을 비교한 결과, 제방과 수체 경계면 식생과 하상 세굴로 인한 오차로 정량적이 수위의 정합성에는 한계가 존재하였지만, 수위의 정량적인 변동성을 확인할 수 있었으며, 수위 변화의 반응속도를 판별할 수 있었다.

  • PDF

Development of an Official Method for Measurement of Fluazinam Residues for Quarantine of Imported and Exported Horticultural Products (수출입 원예작물의 검역을 위한 살균제 Fluazinam의 공정 잔류분석법 개발)

  • Kim, Gyeong-Ha;Ahn, Kyung-Geun;Kim, Gi-Ppeum;Hwang, Young-Sun;Chang, Moon-Ik;Kang, In-Kyu;Lee, Young Deuk;Choung, Myoung-Gun
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.183-194
    • /
    • 2016
  • This experiment was conducted to establish an official determination method to measure fluazinam residue in horticultural crops for import and export using GC-ECD/MS. Fluazinam residue was extracted with acetone from fresh samples of four representative horticultural products, the vegetable crops green pepper and kimchi cabbage, and the fruit crops mandarin and apple. The acetone extract was diluted with saline water and n -hexane partitioning was used to recover fluazinam from the aqueous phase. Florisil column chromatography was additionally employed for final purification of the extract. Fluazinam was separated and quantitated by GC with ECD using a DB-17 capillary column. The horticultural crops were fortified with three different concentrations of fluazinam. Mean recoveries ranged from 82.5% to 99.9% in the four crops. The coefficients of variation were less than 10.0%. The quantitative limit of fluazinam detection was $0.004mg{\cdot}kg^{-1}$ in the four crop samples. GC/MS with selected-ion monitoring was also used to confirm the suspected residue. This analytical method was reproducible and sensitive enough to measure the residue of fluazinam in horticultural commodities for import and export.

Determination of Quintozene Residues in Agricultural Commodities Using GC-ECD/MS (GC-ECD/MS를 이용한 농산물 중 Quintozene의 잔류분석)

  • Ahn, Kyung-Geun;Kim, Gyeong-Ha;Kim, Gi-Ppeum;Hwang, Young-Sun;Hong, Seung-Beom;Lee, Young Deuk;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.195-203
    • /
    • 2015
  • Quintozene, pentachloronitrobenzene (PCNB) is a contact fungicide for control of soilborne phytopathogenic fungi during cultivation of diverse crops. It was introduced to agricultural use around 1930's as a substitute for mercurial disinfectants. Although quintozene had been first registered in Korea on 1969. However, now it was banned to use due to its high residue levels in selected harvest products. Also, high possibility is expected that the residue may be contained in imported agricultural commodities as it is still used widely over the world. Therefore, this study was conducted to establish a determination method for quintozene residue in crops using GC/ECD/MS. Quintozene residue was extracted with acetonitrile from representative samples of five raw products which comprised hulled rice, soybean, Kimchi cabbage, green pepper, and apple. The extract was diluted with saline water, and n-hexane partition was followed to recover quintozene from the aqueous phase. Florisil column chromatography was additionally employed for final clean up of the extract. The quintozene was quantitated by GLC with ECD, using a DB-1 capillary column. The crops were fortified with quintozene at 3 levels per crop. Mean recoveries ranged from 79.9% to 102.7% in five representative agricultural commodities. The coefficients of variation were less than 4.3%. Quantitative limit of quintozene was 0.004 mg/kg in representative five crop samples. A GC/MS with selected-ion monitoring was also provided to confirm the suspected residue. Therefore, this analytical method was reproducible and sensitive enough to determine the residue of quintozene in agricultural commodities.

Determination of Amisulbrom Residues in Agricultural Commodities Using HPLC-UVD/MS (HPLC-UVD/MS를 이용한 농산물 중 Amisulbrom의 잔류분석)

  • Ahn, Kyung-Geun;Kim, Gyeong-Ha;Kim, Gi-Ppeum;Kim, Min-Ji;Hwang, Young-Sun;Hong, Seung-Beom;Lee, Young Deuk;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.321-329
    • /
    • 2014
  • This experiment was conducted to establish an analytical method for residues of amisulbrom, as recently developed an oomycete-specific fungicide showing inhibition of fungal respiration, in crops using HPLC-UVD/MS. Amisulbrom residue was extracted with acetonitrile from representative samples of five raw products which comprised apple, green pepper, kimchi cabbage, potato and hulled rice. The extract was diluted with 50 mL of saline water and directly partitioned into dichloromethane to remove polar co-extractives in the aqueous phase. For the hulled rice sample, n-hexane/acetonitrile partition was additionally employed to remove non-polar lipids. The extract was finally purified by optimized Florisil column chromatography. On an octadecylsilyl column in HPLC, amisulbrom was successfully separated from sample co-extractives and sensitively quantitated by ultraviolet absorption at 255 nm with no interference. Accuracy and precision of the proposed method was validated by the recovery test on every crop samples fortified with amisulbrom at 3 concentration levels per crop in each triplication. Mean recoveries ranged from 85.3% to 105.6% in five representative agricultural commodities. The coefficients of variation were all less than 10%, irrespective of sample types and fortification levels. Limit of quantitation (LOQ) of amisulbrom was 0.04 mg/kg as verified by the recovery experiment. A confirmatory method using LC/MS with selected-ion monitoring technique was also provided to clearly identify the suspected residue. The proposed method was sensitive, reproducible and easy-to-operate enough to routinely determine the residue of amisulbrom in agricultural commodities.

Analytical Method for Flusulfamide as Benzenesulfonamide Fungicide, Residues in Major Agricultural Commodities (주요 농산물 중 Bezenesulfonamide계 살균제 Flusulfamide의 잔류 분석법)

  • Ahn, Kyung-Geun;Kim, Gi-Ppeum;Hwang, Young-Sun;Kang, In-Kyu;Lee, Young Deuk;Choung, Myoung-Gun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.1
    • /
    • pp.57-65
    • /
    • 2018
  • BACKGROUND: An analytical method was developed using HPLC-UVD/MS to precisely determine the residue of flusulfamide, a benzenesulfonamide fungicide used to inhibit spore germination. METHODS AND RESULTS: Flusulfamide residue was extracted with acetone from representative samples of five raw products which comprised apple, green pepper, Kimchi cabbage, hulled rice, and soybean. The extract was diluted with large volume of saline water and directly partitioned into dichloromethane to remove polar co-extractives in the aqueous phase. For the hulled rice and soybean samples, n-hexane/acetonitrile partition was additionally employed to remove non-polar lipids. The extract was finally purified by optimized Florisil column chromatography. On an octadecylsilyl column in HPLC, flusulfamide was successfully separated from co-extractives of sample, and sensitively quantitated by ultraviolet absorption at 280 nm with no interference. Accuracy and precision of the proposed method was validated by the recovery experiment on every crop sample fortified with flusulfamide at 3 concentration levels per crop in each triplication. CONCLUSION: Mean recoveries ranged from 82.3 to 98.2% in five representative agricultural commodities. The coefficients of variation were all less than 10%, irrespective of sample types and fortification levels. Limit of quantitation (LOQ) of flusulfamide was 0.02 mg/kg as verified by the recovery experiment. A confirmatory method using LC/MS with selected-ion monitoring technique was also provided to clearly identify the suspected residue.

Development of Analytical Method for Fipronil Residues in Agricultural Commodities Using GC-ECD/MS (GC-ECD/MS를 이용한 농산물 중 Fipronil의 잔류 분석법 개발)

  • Ahn, Kyung-Geun;Kim, Gyeong-Ha;Kim, Gi-Ppeum;Hwang, Young-Sun;Kang, In-Kyu;Lee, Young Deuk;Choung, Myoung-Gun
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.309-317
    • /
    • 2015
  • BACKGROUND: An analytical method was developed using GC-ECD/MS to precisely determine the residue of fipronil, a phenylpyrazole insecticide used to control a wide range of foliar and soil-borne pests.METHOD AND RESULTS: Fipronil residue was extracted with acetone from representative samples of five raw products which comprised hulled rice, soybean, Kimchi cabbage, green pepper, and apple. The extract was diluted with saline water, and fipronil was partitioned into n-hexane/dichloromethane (20/80, v/v) to remove polar co-extractives in the aqueous phase. Florisil column chromatography was additionally employed for final purification of the extract. Fipronil was separated and quantitated by GC-ECD using a DB-17 capillary column. Accuracy of the proposed method was validated by the recovery from crop samples fortified with fipronil at 3 levels per crop in each triplication.CONCLUSION: Mean recoveries ranged from 86.6% to 106.0% in five representative agricultural commodities. The coefficients of variation were less than 10%. Limit of quantitation of fipronil was 0.004 mg/kg as verified by the recovery experiment. A confirmatory technique using GC/MS with selected-ion monitoring was also provided to clearly identify the suspected residue. Therefore, this analytical method was reproducible and sensitive enough to determine the residue of fipronil in agricultural commodities.