• Title/Summary/Keyword: 분산입도

Search Result 163, Processing Time 0.032 seconds

Study on the Solvent Effect in the Coating of Conductive Polythiophene Derivative (용매에 따른 폴리싸이오펜 치환체의 전기전도성에 미치는 영향)

  • Pak, Na-Young;Lee, Seong-Min;Chung, Dae-Won
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.290-294
    • /
    • 2011
  • The surface resistance of poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT/PSS), which has appeared to be one of the most successful conductive polymers, is affected by the solvent. In this paper, pellet-type PEDOT/PSS was suspended in $H_2O$, ethanol (EtOH), ethylene glycol (EG) or dimethylsulfoxide (DMSO), and coated on PET film. The surface resistances of the films made from EG or DMSO suspension were observed to be lower, nearly by 2 orders of magnitude, than that made from $H_2O$ suspension. No significant difference among four kinds of films was observed when the thermal properties and chemical structures were investigated by TGA and XPS, respectively. However, particle size of PEDOT/PSS was in the range of $1-3{\mu}m$ in EG or DMSO, on the other hand, less than $0.1{\mu}m$ in $H_2O$. It is considered that the particle size of PEDOT/PSS in the suspension plays an important role for the surface resistance.

Preparation of Silica Particles by Emulsion-Gel Process Using Membrane Emulsification (막유화 에멀젼-겔 공정에 의한 실리카 입자의 제조)

  • Yeon, Song-Hee;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.87-96
    • /
    • 2010
  • We prepared spherical silica particles by controlling various conditions of emulsion-gel procedure using a lab-scale membrane emulsification system equipped with SPG (Shirasu porous glass) membrane having pore size of 2.6 ${\mu}m$. We determined the effects of process parameters of membrane emulsification (dispersed phase pressure, stabilizer and emulsifier concentration in continuous phase, $H_2O$/TEOS ratio, ratio of dispersed phase to continuous phase) on the mean size and size distribution of silica particles. The increase of the dispersed phase pressure and ratio of dispersed phase to continuous phase led to the increase in the mean size of silica particles. On the contrary, the increase in stabilizer and emulsifier concentration and $H_2O$/TEOS ratio caused the reduction of the mean size of particles. Through controlling these parameters, monodisperse spherical silica particles with about 3 ${\mu}m$ of the mean size were finally prepared.

Polymerization of Environmentally Friendly Acrylic Resin by Non-Aqueous Dispersion (비수계 분산중합을 이용한 환경친화적 아크릴수지의 합성)

  • Oh, Dae-Geun;Kim, Jeong-Ho
    • Clean Technology
    • /
    • v.13 no.3
    • /
    • pp.208-214
    • /
    • 2007
  • Environmentally-friendly acrylic resin particles having the diameter between $0.1\;and\;1\;{\mu}m$ were prepared using non-aqueous dispersion (NAD) polymerization technique. The first step is to prepare the stabilizer and the next step is the NAD polymerization by dropping an acrylic monomer to stabilizer dispersed in organic media. To obtain a NAD resin with proper level of viscosity, it fumed out that stabilizers having sufficient viscosity such as 1000 cP need to be used, for which the stepwise feeding of monomer and initiator was necessary. It was necessary to put proper amount of stabilizer, but no more increase in viscosity was observed when more than that amount of stabilizer was added. Choice of proper monomers considering solubility parameter was essential to avoid the bimodal particle size distribution in the NAD resin product.

  • PDF

Effects of Surface-modification of Carbon Black on the Characteristics of Polymerized Toner (카본블랙의 표면개질이 중합토너의 특성에 미치는 영향)

  • Lee, Eun Ho;Kim, Dae Su
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.628-633
    • /
    • 2013
  • Carbon black was surface-modified to prepare styrene-based suspension polymerized toner with excellent carbon black dispersibility inside toner particles. Carbon black was oxidized first to introduce hydroxyl groups on the surfaces, then esterification between the hydroxyl groups and carboxyl groups of organic acids (oleic acid, palmitic acid, acrylic acid) was followed to obtain organically surface-modified carbon black. The surface-modification of carbon black was confirmed by FTIR. Apparent carbon black dispersibility in the monomer mixture of the binder resin was tested and the particle size of dispersed carbon black was measured by particle size analyzer. Optical micrographs showed that carbon black dispersibility inside toner particles was improved considerably when the carbon black surfacemodified with oleic acid was used. The polymerized toner prepared with the carbon black surface-modified with oleic acid showed ideal particle size and size distribution as a toner.

Synthesis of Iron Nanopowder from FeCl3 Solution by Chemical Reduction Method for Recycling of Spent Neodymium Magnet (네오디뮴 폐자석 재활용을 위한 화학환원법을 이용한 철 나노 분말 제조)

  • Ha, Yonghwang;Gang, Ryun-Ji;Choi, Seung-Hoon;Yoon, Ho-Sung;Ahn, Jong-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6187-6195
    • /
    • 2012
  • Recycling process of iron should be developed for efficient recovery of neodymium(Nd), rare metal, from acid-leaching solution of neodymium magnet. In this study, $FeCl_3$ solution as iron source was used for synthesis of iron nanoparticle with the condition of various factors, etc, reductant, surfactant. $Na_4O_7P_2$ and polyvinylpyrrolidone(PVP) as surfactants, $NaBH_4$ as reductant, and palladium chloride($PdCl_2$) as a nucleation seed were used. Iron powder was analyzed with instruments of XRD, SEM and PSA for measuring shape and size. Iron nanoparticles were made at the ratio of 1 : 5(Fe (III) : $NaBH_4$) after 30 min of reduction time. Size and shape of iron particles synthesized were round-form and 50 nm ~ 100 nm size. Zeta-potential of iron at the 100 mg/L of $Na_4O_7P_2$ was negative value, which is good for dispersion of metal particle. When $Na_4O_7P_2$(100 mg/L), PVP($FeCl_3$ : PVP = 1 : 4, w/w) and Pd($FeCl_3$ : $PdCl_2$ = 1 : 0.001, w/w) were used, iron nanoparticles which are round-shape, well-dispersed, near 100 nm-sized can be made.

A Monitoring Strategy on Dispersion of Particulate Matter emitted from Domestic Limestone Open Pit Mines (국내 노천 석회석 광산먼지 확산 모니터링 방안)

  • Yoon, Jinho;Lee, Sang-hun;Seo, Eui Young;Baek, Seunghan
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.475-482
    • /
    • 2021
  • This study proposed a strategy with literature review on effective monitoring of dispersion of the particulate matters (PM) emitted from domestic open pit lime mines. The mines generally produced a large amount of PM through the mine processes such as crushing and transportation of raw or crushed ores. The PM emission from mine facilities or transportation can be assessed using empirical equations which was prepared through the experimental tests to produce PM from ores. For effective monitoring of mine PM dispersion, this study showed a preliminary application of the monitoring network with multiple low-cost sensors around a main PM emission source for each mine site. Therefore, two domestic limestone mine sites were selected for this study, and install the monitoring network with low-cost PM sensors and LTE (Long-term evolution) data communication. Then, preliminary resultant PM data plotted according to monitoring duration showed typical PM dispersion patterns. The quantification of the PM dispersion patterns should be roughly prepared by a PM size-dependent dispersion modeling.

Ultra-high Temperature EM Wave Absorption Behavior for Ceramic/Sendust-aluminosilicate Composite in X-band (X-Band 영역에서의 세라믹/샌더스트-알루미노실리케이트 복합재의 초고온 전자파 흡수 거동)

  • Choi, Kwang-Sik;Sim, Dongyoung;Choi, Wonwoo;Shin, Joon-Hyung;Nam, Young-Woo
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.201-215
    • /
    • 2022
  • This paper presents the development of thin and lightweight ultra-high temperature radar-absorbing ceramic composites composed of an aluminosilicate ceramic matrix-based geopolymer reinforced ceramic fiber and sendust magnetic nanoparticles in X-band frequency range (8.2~12.4 GHz). The dielectric properties with regard to complex permittivity of ceramic/sendust-aluminosilicate composites were proportional to the size of sendust magnetic nanoparticle with high magnetic characteristic properties as flake shape and its concentrations in the target frequency range. The characteristic microstructures, element composition, phase identification, and thermal stability were examined by SEM, EDS, VSM and TGA, respectively. The fabricated total thicknesses of the proposed single slab ultra-high temperature radar absorber correspond to 1.585 mm, respectively, exhibiting their excellent EM absorption performance. The behavior of ultra-high temperature EM wave absorption properties was verified to the developed free-space measurement system linked with high temperature furnace for X-band from 25℃ to 1,000℃.

Evaluation of the Stability of Biodegradable Nanoparticle with Time via Particle Size Measurement (입자 크기 측정을 통한 생분해성 나노입자의 시간에 따른 분산 안정성 평가)

  • Cho, Kuk-Young;Yim, Jin-Heong;Park, Jung-Ki;Lee, Ki-Seok
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.246-250
    • /
    • 2008
  • Colloidal stability of the biodegradable nanoparticle was characterized by measuring the variation of particle size with time using photon correlation spectroscopy. Three kinds of polymers, namely, poly(D,L-lactide-co-glycolide)(PLGA), PLGA/poly(L-lactide) blends, and PLGA/poly(L-lactide)-g-poly(ethylene glycol) blends were used as matrix material for nanoparticle preparation. Nanoparticles were prepared with or without using poly(vinyl alcohol)(PVA) as suspension stabilizer to evaluate the condition of preparation. Nanoparticles from the blend of amphiphilic graft copolymer with short poly(ethylene glycol) chain and PLGA maintained suspension for 1 day when protein stock solution was introduced. This is somewhat improvement in colloidal stability against protein adsorption compared with that of nanoparticles without PEG moiety. Suspension stabilizer, PVA, had a significant effect on the colloidal stability against freezing and protein adsorption which led to coagulation of nanoparticles. It is important to consider effect of suspension stabilizer as well as materials used to prepare nanoparticle on the colloidal stability.

Preparation and Characterization of Monodispersed Zinc Oxide Fine Particles in Emulsions (에멀젼을 이용한 단분산 미세 산화아연 입자의 제조 및 특성)

  • Ju, Chang Sik;Ku, Jun Pyo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.846-851
    • /
    • 1998
  • An experimental research on the preparation of zinc oxide fine particles in w/o emulsions was conducted. Precipitation solutions were zinc nitrate aqueous solutions with hexamethylenetetramine(HMTA) as precipitant. The precipitation solutions formed stable w/o emulsions with kerosine in the presence of Span 80. Homogeneous precipitation reaction occurred in the w/o emulsion after the resultant w/o emulsion was heated above the decomposition temperature of HMTA and zinc oxide particles were precipitated. In some case, zinc oxide particles of bi-modal distribution were obtained. However, zinc oxide fine particles of narrow particle size distribution could be obtained, even when the initial zinc concentration of precipitation solution and the conversion to zinc oxide are both higher that those in bulk homogeneous precipitation.

  • PDF

Preparation of α-Al2O3 Nanoparticles by flame Spray Pyrolysis (ESP) of Microemulsion (마이크로에멀전의 화염분무열분해(ESP)에 의한 α-알루미나 나노입자의 제조)

  • 이상진;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.242-246
    • /
    • 2004
  • Nano-sized a-alumina with a narrow distribution was prepared by using Flame Spray Pyrolysis (FSP). The microemulsion of water in oil (W/O) was prepared to make ultrafine droplets for FSP process. Kerosene (fuel) as a continuos phase and Al(NO$_3$)$_3$$.$9$H_2O$ (oxidizer) aqueous solution as a dispersed phase were prepared for microemulsification. The microemulsion with dispersion stability was obtained by adjusting the composition of 80 vol% kerosene, 10 vol% aqueous solution, and 10 vol% emulsifying agent. Microemulsion was sprayed onto the flame by using two-fluid nozzle spray gun under the condition of 0.03 ㎫ air pressure. The synthesized products were $\alpha$-alumina phase with the size of 20 to 30 nm.