• Title/Summary/Keyword: 분사 입자

Search Result 287, Processing Time 0.031 seconds

A Study on Characteristics of Performance and Emission by CRDI Engine's Injection Strategy (커먼레일 디젤기관에서 분사전략에 따른 성능 및 배출가스에 관한 연구)

  • Eom, Dong-Seop;Ko, Dong-Kyun;Ra, Wan-Yong;Lee, Seang-Wock
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.134-139
    • /
    • 2011
  • Recent research has focused on engine combustion technology as well as application of after-treatment in order to comply with emission regulation. However, it is much more efficient way to control emissions from engine itself and furthermore research on engine control will provide the direction of after-treatment technology in future. Furthermore, emission standard regulation for passenger diesel vehicles has been stringent compared to others and nano-particles will be included in EURO6 regulation in Europe and similar emission standard will be introduced in Korea. A 3.0 liter high speed diesel engine equipped with by CRDI system of 160MPa injection pressure, and an intake/exhaust system of V type 6 cylinder turbo-intercooler was applied. The injection duration and injection quantity, pilot injection types which are related to CRDI and air/fuel ratio control applied by EVGT were changed simultaneously. Standard experiment procedure constituted dilution apparatus and CPC system to collect nano-particles and these test results were compared with regulated materials of CO, HC, NOx and investigated their relations and characteristics of nano-particles.

Development of Rapid Mask Fabrication Technology for Micro-abrasive Jet Machining (미세입자 분사가공을 위한 쾌속 마스크 제작기술의 개발)

  • Lee, Seung-Pyo;Ko, Tae-Jo;Kang, Hyun-Wook;Cho, Dong-Woo;Lee, In-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.138-144
    • /
    • 2008
  • Micro-machining of a brittle material such as glass, silicon, etc., is important in micro fabrication. Particularly, micro-abrasive jet machining (${\mu}-AJM$) has become a useful technique for micro-machining of such materials. The ${\mu}-AJM$ process is mainly based on the erosion of a mask which protects brittle substrate against high velocity of micro-particle. Therefore, fabrication of an adequate mask is very important. Generally, for the fabrication of a mask in the ${\mu}-AJM$ process, a photomask based on the semi-conductor fabrication process was used. In this research a rapid mask fabrication technology has been developed for the ${\mu}-AJM$. By scanning the focused UV laser beam, a micro-mask pattern was fabricated directly without photolithography process and photomask. Two kinds of mask patterns were fabricated using SU-8 and photopolymer (Watershed 11110). Using fabricated mask patterns, abrasive-jet machining of Si wafer were conducted successfully.

Theoretical Analysis on the Swirl Type Nozzle(III) -Effects of Forces on the Droplet Formation- (와권(渦券) 노즐의 이론분석(理論分析)(III) -힘이 입자형성(粒子形成)에 미치는 영향(影響)-)

  • Lee, S.W.;Sakai, Jun
    • Journal of Biosystems Engineering
    • /
    • v.14 no.3
    • /
    • pp.196-206
    • /
    • 1989
  • 와권(渦券) 노즐에 작용(作用)되는 힘은 분두(噴頭)의 도구(導溝) 및 와실(渦室)의 기능(機能)에 의하여 축방향력(軸方向力)과 반경방향력(半徑方向力)으로 분류(分類)되고, 이 두 개의 힘은 미립화(微粒化)의 과정(過程)에 각각(各各)의 특성(特性)을 주고 있다. 반경방향(半徑方向)의 힘은 분두(噴頭)에서 분사(噴射)되는 입자(粒子)에 전단력(剪斷力)으로서 작용(作用)하지만 이 힘의 크기는 물방울의 직경(直徑) $100{mu}m$을 기준(基準)하여 2.4m/s의 속도(速度) 이내(以內)의 범위(範圍)이었으며, 그 속도범위(速度範圍)는 다음 유도된 식(式)으로 산출(算出)할 수 있었다. $$V_{ot}=(\frac{8g{\sigma}}{d{\gamma}})^{1/2}$$ 축방향력(軸方向力)은 아래 유도된 식(式)과 같이 분사액류(噴射液流)의 굴절각에 매우 민감하게 영향을 미치었고, 그 크기는 반경방향력(半徑方向力)에 비교(比較)하여 큰 값을 나타내었다. $$V_{\ell}={\sigma}[\frac{1}{2}{\rho}_{a}sin2{\theta}_d-4({\mu}+{\eta})\frac{\ell}{r_o}]^{-1}$$.

  • PDF

A Control Strategy of Fuel Injection Quantity and Common-rail Pressure to Reduce Particulate Matter Emissions in a Transient State of Diesel Engines (승용디젤엔진의 과도구간 입자상물질 저감 및 운전성능 향상을 위한 연료분사량 및 커먼레일압력 제어전략)

  • Hong, Seungwoo;Jung, Donghyuk;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.623-632
    • /
    • 2015
  • This study proposes a control strategy of the common rail pressure with a fuel injection limitation algorithm to reduce particulate matter (PM) emissions under transient states. The proposed control strategy consists of two parts: injection quantity limitation and rail pressure adaptation. The injection limitation algorithm determines the maximum allowable fuel injection quantity to avoid rich combustion under transient states. The fuel injection quantity is limited by predicting the burned gas rate after combustion; however, the reduced injection quantity leads to deterioration of engine torque. The common rail pressure adaptation strategy is designed to compensate for the reduced engine torque. An increase of the rail pressure under transient states contributes to enhancement of the engine torque as well as reduction of PM emissions by promoting atomization of the injected fuel. The proposed control strategy is validated through engine experiments. The rail pressure adaptation reduced the PM emission by 5-10% and enhanced the engine torque up to 2.5%.

Experimental Evaluation of EGR and Fuel Injection Pressure on Combustion, Size-resolved Nano-particle and NOx Emissions Characteristics in an Advanced Light-duty Diesel Engine (승용 디젤 엔진의 배기가스재순환 및 연료 분사 압력 제어전략에 따른 연소, 입자상 물질 및 질소 산화물 배출 특성에 관한 연구)

  • You, Jung Been;Ko, Ahyun;Jang, Wonwook;Baek, Sungha;Jin, Dong Young;Myung, Cha-Lee;Park, Simsoo;Han, Jung Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.8-15
    • /
    • 2014
  • In order to satisfy stringent future emission regulation in diesel engines, systematic approaches to mitigate the harmful exhaust emissions were developed, such as engine hardware, fuel injection equipment, engine control, and after-treatment system. In this study, to improve the nano-particle and NOx emissions from a state-of-the-arts diesel engine, effect of various EGR and fuel injection pressure with combustion analysis were evaluated. Size-resolved nano-particle and NOx emissions showed trade-off characteristics with various EGR rate and increment of fuel injection pressure.

Analysis of a Continuous and Instantaneous Vacuum Drying System for Drying and Separation of Suspended Paricles in Waste Solvent (폐용제에 함유된 입자의 건조 및 분리용 연속식 순간 진공건조시스템 해석)

  • 구재현;이재근
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.28-36
    • /
    • 2000
  • This study describes to analyze the characteristics for separation and recovery of both the dried particles and the purified solvent from the waste solvent through the vaporization process by the continuous and instantaneous vacuum drying system. The vacuum drying system for the waste solvents recovery consists of a feeding pump, a double pipe heat exchanger, a vacuum spray chamber, and a condenser. The vacuum drying system heats the waste solvent to the vapor in the double pipe heat exchanger and the expanded vapor is sprayed at the end of the tube. The vaporized solvent in the condenser are recovered. The particles in the waste solvent are separated and dried from the vapor in the vacuum spray chamber. Performance evaluation of the vacuum drying system was conducted using the mixture of the dried pigment particles and benzene or alkylbenzene as test samples. For the mixture of 10 wt% pigment particles an 90% benzene, the recovery efficiency of benzene was 88% with the purity of 99% and the recovery efficiency of dried particles was 94% with the moisture of 1.1 wt%. The size of pigment particles was decreased from $6.5\mu\textrm{m}$ to $5.6\mu\textrm{m}$ in diameter due to high speed spraying and dispersion in the vacuum drying system during drying process. Therefore, the vacuum drying system showed to be an effective method for separating particles and solvent in the waste solvent.

  • PDF

Study on Experimental Verification of Uniform Control using Agricultural Drone (농업용 방제 드론을 이용한 균일 방제에 관한 실험적 검증)

  • Wooram Lee;Sang-Beom Lee; Jin-Teak Lim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.575-580
    • /
    • 2023
  • This study was prevent the decrease in crop output by insect pests and spraying by application uniformity. A flight level 4 m height and 4-5 m/sec. speed are difficult to maintain with a agricultural drone for aerial application, which has been affected by the methods or environmental factors, such as changes in the wind. Therefore, which can allow a controlled application width and spray rate automatically and verified experimentally using drone. The sprayed particles began to decrease from about 3.75 m on the left and right sides of the spray nozzle. According to the number of particles, the effective spraying width was observed to be about 7.5 m, and it was verified that the proposed spraying system was effective in uniform control system.

Effect of various surface treatment methods of highly translucent zirconia on the shear bond strength with resin cement (고투명도 지르코니아의 다양한 표면처리 방법이 레진시멘트와의 전단결합강도에 미치는 영향)

  • Yu-Seong Kim;Jin-Woo Choi;Hee-Kyung Kim
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.3
    • /
    • pp.179-188
    • /
    • 2023
  • Purpose. The purpose of this study was to evaluate the effect of surface treatments on the shear bond strength of two types of zirconia (3-TZP and 5Y-PSZ) with resin cement. Materials and methods. Two different types of zirconia specimens with a fully sintered size of 14.0×14.0×2.0 mm3 were prepared, polished with 400, 600, and 800 grit silicon carbide paper, and buried in epoxy resin. They were classified into four groups each control, sandblasting, primer, and sandblasting & primer. Cylindrical resin adhered to the surface-treated zirconia with resin cement. It was stored in distilled water (37℃) for 24 hours, and a shear bond strength test was performed. The normality of the experimental group was confirmed with the Kolmogorov-Smirnov & Shapiro-Wilk test. The interaction and statistical difference were analyzed using a two-way ANOVA. A post-hoc analysis was performed using Dunnett T3. Results. As a result of two-way ANOVA, there was no significant difference in shear bonding strength between zirconia types (P > .05), but there was a significant correlation in the sandblasting, primer, and alumina sandblasting & primer group (P < .05). Dunnett T3 post-test showed that, regardless of the type of zirconia, shear bonding strength was sandblasting & primer > Primer > sandblasting > control group (P < .05). Conclusion. There was no difference in shear bond strength between the types of zirconia. The highest shear bond strength was shown when the mechanical and chemical treatments of the zirconia surface was performed simultaneously.

Development of Hybrid type Air Pollution Control System with Air Turbine & Bearing type Atomizer (무마찰 공기베어링을 이용한 고속회전 미세액적 분사장치를 갖는 하이브리드형 고효율 대기오염 방지시설 개발)

  • 김정원;위판석;김진용;정원문;박영옥;박상신
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.53-54
    • /
    • 2003
  • 현대 산업사회가 다양해짐에 따라 발생되는 생활폐기물의 형태도 다양화되었고 발생폐기물의 성상은 연소가 어려운 난분해성 폐기물로 발열량이 높아지고 있다. 이러한 폐기물의 처리를 위한 소각설비는 폐기물 처리형태에 따라 대형의 도시 쓰레기 소각장이나 지자체의 중형급 소각장, 발생원 단위의 소형 소각장으로 구분하여 처리하고있다. 기존 중ㆍ대형 소각로의 유해가스 처리시설은 일반적으로 냉각설비와 가스상 처리설비, 입자상 처리설비 등으로 구성되는데 반해, 소형 소각로는 싸이클론 방식만으로 구성되어 입자상 물질만을 처리하였으나, 최근에 들어서 관련법규가 개정되어 소형 소각로에서도 입자상 오염물질뿐만 아니라 HCl 및 SOx 등과 같은 산성가스류와 다이옥신 등의 배출농도를 규제함에 따라 가스상 오염물질도 처리하는 방안을 도입하고 있는 추세이다. (중략)

  • PDF

A study on the surface characteristics of diamond wire-sawn silicon wafer for photovoltaic application (다이아몬드 코팅 와이어로 가공된 태양전지용 실리콘 웨이퍼의 표면 특성에 관한 연구)

  • Lee, Kyoung-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.6
    • /
    • pp.225-229
    • /
    • 2011
  • Most of the silicon cutting methods using the multi-wire with the slurry injection have been used for wafers of the crystalline solar cell. But the productivity of slurry injection cutting type falls due to low cutting speeds. Also, the direct contact with the metal wire and silicon block increases the concentration of metallic impurities in the wafer's surface. In addition, the abrasive silicon carbide (SiC) generates pollutants. And production costs are rising because it does not re-use the worn wire. On the other hand, the productivity of the cutting method using the diamond coated wire is about 2 times faster than the slurry injection cutting type. Also, the continuous cutting using the used wire of low wear is possible. And this is a big advantage for reduced production costs. Therefore, the cutting method of the diamond coated wire is more efficient than the slurry injection cutting technique. In this study, each cutting type is analyzed using the surface characteristics of the solar wafer and will describe the effects of the manufacturing process of the solar cell. Finally, we will suggest improvement methods of the solar cell process for using the diamond cutting type wafer.