• Title/Summary/Keyword: 분사입자

Search Result 287, Processing Time 0.026 seconds

The experimental study of post injection effect on exhaust gas temperature and composition in a common rail DI diesel engine (커먼레일 디젤엔진에서 후분사 변화가 배출가스 성분 및 온도 변화에 미치는 영향에 대한 실험적 연구)

  • Chung, Jae-Wook;Chang, Dong-Hoon;Park, Jung-Kyu;Chun, Kwang-Min
    • Journal of ILASS-Korea
    • /
    • v.9 no.1
    • /
    • pp.15-20
    • /
    • 2004
  • The post injection effect to enhance aftertreatment devices' performance is essential to meet future stringent emission standards by controlling exhaust gas temperature and emission pollutants. The test has been made with commercial common rail diesel engine by post injection manipulation, to optimize exhaust gas temperature while guarantee low fuel penalty. The optimization was done at 1500, 2000 and 2500[rpm] for 2, 4[bar] condition which show low exhaust gas temperature. The main purpose of this test is dedicated to understand mechanism of exhaust gas temperature rise while optimizing

  • PDF

In-Cylinder Flow Analysis in a Spark-ignited Direct Injection Engine using CFD (CFD를 이용한 직접 분사식 스파크 점화 엔진의 실린더 내부 유동 해석)

  • 김명환;이내현;최규훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.22-30
    • /
    • 1999
  • Optimization of in-cylinder flow is regarded as one of the most important factors to realize stable stratified charge combustion in a Spark-ignited Direct Injection(SDI) engine. Therefore, Computational Fluid Dynamic(CFD) simulation technique were used to clarify the characteristics of in-cylinder flow of a SDI engine with top entry intake port. Also, CFD results were compared to experimental results using Laser Doppler Velocimetry(LDV), Particle Image Velocimetry(PIV) and good validations were met. As the results reverse tumble flow generated during intake process was preserved by configuration of curved piston while base and reverse tumbles were diminished at the end of compression stroke in case of flat top piston. In addition, it will be needed to optimize the fuel mixture distribution based on these results.

  • PDF

Study on Synthesis of Boron-Containing Nanoparticles Using Thermal Plasma System (고온 플라즈마를 이용한 붕소 함유 나노입자 제조에 관한 연구)

  • Shin, Weon-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.731-736
    • /
    • 2012
  • A new method for producing boron-containing nanoparticles is described. Boron trichloride ($BCl_3$) and methane ($CH_4$) are dissociated through injection into a thermal plasma followed by a nucleation process producing boron or boron carbide nanoparticles. X-ray photoelectron spectroscopy was used to detect B-C bonds related to the carbide state and to probe the ratio of boron to carbon in the B-C bond structure. In addition, nanoparticles were characterized with scanning transmission electron microscopy and electron energy loss spectroscopy. It was found that nanoparticles were in the range 30-70 nm and a boron to carbon ratio in the B-C bond structure of up to 2 can be reached when $BCl_3$ of 20 sccm and $CH_4$ of 25 sccm were used.

Preparation of Micro- and Submicron-Particles of a Poorly Water-Soluble Antifungal Drug Using Supercritical Fluid Process (초임계유체공정을 이용한 난용성 항진균제의 미세입자 제조)

  • Kim, Seok-Yun;Lee, Jung-Min;Won, Byoung- Hyun;Jung, In-Il;Ryu, Jong-Hoon;Lim, Gio-Bin
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.80-87
    • /
    • 2010
  • In this study, micro- and submicron particles of itraconazole, a poorly water-soluble antifungal drug, were prepared for improving its aqueous solubility using an ultrasound-assisted supercritical fluid technique, called SAS-EM. The SAS-EM process used in our experiments was different from the conventional SAS-EM in that the ultrasound was applied directly to the spray nozzle. The effect of the ultrasonic power, temperature, and solvent on the formation of itraconazole particles were investigated. Smaller particles were obtained through our SAS-EM process compared with the ASES process, and the mean particle size decreased as the ultrasonic power increased. Our experimental results confirmed that the ultrasound-assisted supercritical fluid process is an efficient method for producing ultrafine particles.

A Study on Two-interconnected Fluidized Beds System for Selective Solid Circulation (선택적 고체순환을 위한 2탑 유동층 시스템 연구)

  • Ryu, Ho-Jung;Jang, Myoung-Su;Kim, Hong-Ki;Lee, Dong-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.337-343
    • /
    • 2009
  • To apply to novel two-interconnected fluidized beds system for selective solid circulation, a solid separator and a solid circulation system were developed. The solid separation rate increased as the gas velocity through the solid injection nozzle, solid height, and diameter of solid injection nozzle increased. However, the effect of the fluidization velocity was negligible. Coarse($212{\sim}300{\mu}m$) and fine($63{\sim}106{\mu}m$) particles were separated using the solid separator and the solid separation rate was ranged from 66 to 453 g/min. The solid circulation rate increased as the gas velocity through the solid injection nozzle, solid height, and the number of solid intake holes increased. However, the effect of the fluidization velocity was negligible. Fine particle was circulated using the solid circulation system and the solid circulation rate was ranged from 65 to 390 g/min. We also proposed two interconnenced fluidized beds system for selective solid circulation equipped with the developed solid separator and the solid circulation system. Long-term operation of continuous solid circulation up to 20 hours has been performed to check feasibility of stable operation. The pressure drop profiles in two beds and the solid separation rate were maintained steadily, and therefore, we could conclude that solid circulation was smooth and stable.

The Spray Characteristics and Spray Behavior Characteristic in Exhaust Gas Flow of Urea Solution Injector (Urea 수용액 분사용 인젝터의 분무 특성과 배기관내 분무 거동 특성)

  • Oh, Jung-Mo;Han, Young-Deok;Kim, Ki-Bum;Lee, Ki-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.999-1004
    • /
    • 2010
  • Recently, many technologies have been developed in order to satisfy stringent emission regulations. However, in the case of diesel engines, the stringent emission regulations with respect to NOx and PM have not yet been satisfied. A dramatic reduction in the NOx and PM emissions could be achieved by using after-treatment systems such as lean NOx trap (LNT) and urea-SCR systems. However, the high temperature in the exhaust pipe affects the spray behavior of the secondary injector, which is used for supplying the Urea-SCR. Because of this high temperature, it is difficult to achieve uniform distribution of the reducing agent in the manifold. In this paper, the characteristics of a urea-SCR injector used for injecting in the exhaust pipe are presented. The purpose of this study was to investigate the spray characteristics of the injector, such as the spray angle, injection quantity, and SMD. In addition, laser diagnostics and high-speed-camera images were used to analyze the injector spray characteristics and to present a distribution of reduction in the transparent manifold.

Parameters Effect on Fabrication of Nuclear Fuel by Plasma Deposition (플라즈마 침적에 의한 핵열료 제조에 미치는 변수들의 영향)

  • Jeong, In-Ha;Bae, Gi-Gwang
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.783-790
    • /
    • 1998
  • New process development of nuclear fuel fabrication for nuclear power plant was attempted by induction plasma technology with yttria-stabilized-zirconia ($\textrm{ZrO}_{2}$-$\textrm{Y}_{2}\textrm{O}_{3}$)powder, similar to $\textrm{UO}_{2}$, in the respect of melting point and physicochemical characteristics. Extent of powder melting was affected greatly by plasma plate power and particle size. Being optimized such as, sheath gas composition, probe position, particle size and spraying distance, dense deposit of 97.91% T.D. with deposition rate 20mm/min was attained at the condition of 120/20$\ell$/min of Ar/$\textrm{H}_{2}$ flow rate, 80kw of plate power, 8cm of probe position, 200Torr of chamber pressure and 18cm of spraying distance. The pellet of 96.5% of theoretical density was formed with homogeneity and nice exterior view at the best condition of deposition experiments, and the possibility of new nuclear pellet fabrication process was confirmed. The main and interrelated effects on deposit density were assessed by ANOVA(Ana1ysis of Variance).

  • PDF

Analysis of Key Parameters for the Printing Process Optimization of a Fluid Dispensing Systems (유체 디스펜싱 시스템의 프린팅 프로세스 최적화를 위한 주요 파라미터 분석)

  • Hoseung Kang;Haechang Jeong;Soonho Hong;Nam Kyung Yoon;Sunyoung Sohn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.382-393
    • /
    • 2024
  • The Microplotter system with a fluid dispensing method, sprays fluid based on ultrasonic pumping through piezoelectric devices. This technique can possible for various materials with a wide range of viscosities to be printed in microscale. In this paper, we introduces dispenser printing technology as well as aim to understand and apply various processes using the equipment. In addition, we will explain how to optimize the equipment by adjusting parameters such as spray intensity, tip height during printing, and patterning speed. By utilizing Microplotter's advantage of being compatible with a wide range of fluids, including metal nanoparticles, carbon nanotubes, DNA, and proteins, it is expected to be used in various fields such as printed electronics, biotechnology, and chemical engineering.

Experimental Investigation of Nano-sized Particulate Matter Emission Characteristics under Engine Operating Conditions from Common Rail Diesel Engine (커먼레일 디젤엔진의 운전조건이 나노크기 입자상 물질 배출특성에 미치는 영향에 관한 실험적 연구)

  • Lee, Hyung-Min;Myung, Cha-Lee;Park, Sim-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.508-514
    • /
    • 2010
  • The objective of this work presented here was experimental study of steadystate and cold start exhaust nano-sized particle characteristics from common rail diesel engine. The effect of the diesel oxidation catalyst (DOC) on the particle number reduction was insignificant, however, particle number concentration levels were reduced by 3 orders of magnitude into the downstream of diesel particulate filter (DPF). In high speed and load conditions, natural regeneration of trapped particle occurred inside DPF and it was referable to increase particle number concentration. As fuel injection timing was shifted BTDC $6^{\circ}CA$ to ATDC $4^{\circ}CA$, particle number concentration level was slightly reduced, however particle number and size was increased at ATDC $9^{\circ}CA$. Nucleation type particle reduced and accumulation type particle was increased on EGR condition.

PILC Characterization Study for SCR catalyst (SCR 촉매용 PILC 특성 연구)

  • 성희제;이성영
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.99-99
    • /
    • 2003
  • 육상에서 발생하는 공해 물질뿐만 아니라 해상에서 발생하는 공해 물질에 대한 관심이 높아진 가운데 선박에서 발생하는 탄화수소, 질소산화물, 일산화탄소, 이산화황 및 입자상 물질의 규제에 관한 방안이 가시화되고 있는 현실이다. 선박엔진에서 발생하는 질소산화물 제거 연구를 위해서 당사에서는 엔진 연료 분사 시스템에 관한 연구와 더불어 후처리 설비인 SCR 연구를 병행하고 있다. 본 연구는 당사 개발 촉매인 PILC(Pillared Interlayer Clay)를 이용한 SCR 적용에 관한 연구 결과중 촉매 특성에 관한 부분이다. (중략)

  • PDF