• Title/Summary/Keyword: 분사시스템

Search Result 482, Processing Time 0.021 seconds

Guidelines and Optimum Treatment for Agriculture Reuse of Reclaimed Water (농업적 용수재이용 수질기준을 고려한 적정 하수재처리에 관한 연구)

  • Jung, Kwang-Wook;Jeon, Ji-Hong;Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.356-368
    • /
    • 2003
  • Water quality of effluent from wastewater treatment plants (WWTPS) was reviewed to examine the feasibility of agricultural reuse using USEPA and WHO guidelines. It might meet the guidelines for BOD and SS, however, the most critical microbiological concentration was too high and further treatment is required. The pilot study of three treatments were performed to reduce microbiological concentrations. The UV irradiation was proved to be very effective in disinfection of secondary level effluent, and about 30 mW ${\cdot}$ s/$cm^2$ of dose was suggested to meet the even most stringent USEPA guidelines. Slow sand filter demonstrated effective removal of bacteria, and effluent concentration of total coliform (TC), fecal coliform (FC), and E. coli. dropped from about 10,000/100 mL to 300, 200, and 150 MPN/100 mL, respectively, showing over 95% removal. These level of bacterial concentration sufficiently meet the WHO guidelines ($10^3\;{\sim}\;10^5$ FC/100 mL), and could meet the more stringent USEPA guidelines (200 FC/100 mL) if properly applied. Slow sand filter also provided about 50% removal of SS, turbidity, and BOD in addition to bacterial removal. The removal efficiency of pond system was relatively poor, but still showed over 85% removal and effluent concentration of TC, FC, and E. coli was all below 10,000/100 mL. The pond system alone could meet the WHO guidelines, but hardly meet the USEPA guidelines and further treatment might be necessary. Overall, three methods evaluated in the study treat the effluent to meet the WHO microbiological guidelines for agricultural reuse. The UV disinfection and slow sand filter might also could the USEPA guidelines, while the pond system can hardly meet the USEPA guidelines if applied alone. The WHO and USEPA guidelines were made based on data from upland field agricultural system and may not be directly applicable to the paddy field agricultural system. Therefore, national standards for agricultural reuse of reclaimed water should be made considering domestic agricultural systems as well as international guidelines. Also, further investigation is recommended to develop optimum and feasible treatment measures for agricultural reuse of effluent from WWTPs.

A Study on the Optimum Design of Multiple Screw Type Dryer for Treatment of Sewage Sludge (하수슬러지 처리를 위한 다축 스크류 난류 접촉식 건조기의 최적 설계 연구)

  • Na, En-Soo;Shin, Sung-Soo;Shin, Mi-Soo;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.223-231
    • /
    • 2012
  • The purpose of this study is to investigate basically the mechanism of heat transfer by the resolution of complex fluid flow inside a sophisticated designed screw dryer for the treatment of sewage sludge by using numerical analysis and experimental study. By doing this, the result was quite helpful to obtain the design criteria for enhancing drying efficiency, thereby achieving the optimal design of a multiple screw type dryer for treating inorganic and organic sludge wastes. One notable design feature of the dryer was to bypass a certain of fraction of the hot combustion gases into the bottom of the screw cylinder, by the fluid flow induction, across the delicately designed holes on the screw surface to agitate internally the sticky sludges. This offers many benefits not only in the enhancement of thermal efficiency even for the high viscosity material but also greater flexibility in the application of system design and operation. However, one careful precaution was made in operation in that when distributing the hot flue gas over the lump of sludge for internal agitation not to make any pore blocking and to avoid too much pressure drop caused by inertial resistance across the lump of sludge. The optimal retention time for rotating the screw at 1 rpm in order to treat 200 kg/hr of sewage sludge was determined empirically about 100 minutes. The corresponding optimal heat source was found to be 150,000 kcal/hr. A series of numerical calculation is performed to resolve flow characteristics in order to assist in the system design as function of important system and operational variables. The numerical calculation is successfully evaluated against experimental temperature profile and flow field characteristics. In general, the calculation results are physically reasonable and consistent in parametric study. In further studies, more quantitative data analyses such as pressure drop across the type and loading of drying sludge will be made for the system evaluation in experiment and calculation.