• Title/Summary/Keyword: 분사방식

Search Result 298, Processing Time 0.019 seconds

Evaluation on Performance of Repair Mortar Used for Pre-wetting Spray Method (프리웨팅 스프레이 공법용 모르타르의 성능평가)

  • Nam, Yong-Hyuk;Chung, Young-Jun;Jang, Suk-Hwan;An, Young-Ki;Kim, Sung Chil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.235-242
    • /
    • 2005
  • This study is on the evaluation of performance of polymer cement mortar which is used for pre-wetting spray method. Pre-wetting spray method is an epoch-making method to repair concrete structures damaged, which is added a small quantity water preciously to dry mortar to reduce dust and rebound and spray mortar mixed with fixed quantity water at nozzle before spray. The result showed that physical performance such like compressive, flexural and adhesive strength of polymer cement mortar, TS 100 used for pre-wetting spray method was superior to other repair mortar. Also durable performance such as resistance on permeability of chloride ion, carbonation, chemical and freezing-thawing was excellent.

Heat-treatment of Diffusional Behaviors of Plasma Spray Coated Layer for Fabrication of Abrasive Plates for Diamond (다이아몬드 가공을 위한 연마판의 제조 및 플라즈마 용사 코팅층의 열처리 거동)

  • Choi, Kwangsu;Yang, Seunga;Lee, Jong wan;Kim, Minkyu;Lee, Seong jun;Park, Joon Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.6
    • /
    • pp.264-270
    • /
    • 2017
  • In this study, while the abrasive plates for diamond have been prepared through mechanical alloying and sintering of elemental powders, a fabrication route of plasma thermal coatings has been adopted for the first time. When diamond knife is sharped or polished, a metal plate has been applied, which is made of mechanical alloying and sintering. In this study, in order to develop a cost - effective manufacturing process, plasma coatings of FeCrNi and Ti on cast iron plate were applied together with Al intermediate layer coatings. The plasma coatings were successfully performed, and the optimum coating layer conditions were discussed in terms of micro-structural observations at the interfaces.

Design of Full-Scale Combustion Chamber of Liquid Rocket Engine for Ground Hot Firing Tests (지상연소시험용 실물형 고압 연소기의 설계)

  • Han Yeoungmin;Kim Seunghan;Seo Seonghyeon;Cho Wonkook;Choi Hwanseok;Seol Wooseok;Lee Sooyong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.299-304
    • /
    • 2005
  • The design procedures of full-scale combustion chamber with chamber pressure of 53bara, mass flow rate of 90kg/s, combustion efficiency of $94\%$ and specific impulse at ground of 253sec were described. The details of combustion performance and geometrical parameters were also given. Full-scale combustion chamber consists of the combustor head with injector/baffle and the chamber/nozzle with regenerative cooling channels. The design results of combustion chamber with ablative materials, detachable injector head with SUS baffle or baffle injector and chamber body for ground hot firing tests were given in this paper.

  • PDF

Characteristics for Sludge Removal Nozzle in Steam Generator (증기 발생기 슬러지 제거용 노즐 특성 연구)

  • Lee Sam-Goo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.37-43
    • /
    • 2004
  • Water-jet trajectory visualization and velocity deficits from a high pressurized steam-generator nozzles were experimentally observed. In order to find an optimal nozzle configuration. several parameters affecting plugging and erosion onto the steam generator tube were quantitatively analyzed. For the experiments, a high-pressurized pump (pressure in use: 200 kg/$\textrm{cm}^2$, 15 HP, 11 kW, output flow Q : 301/min) was utilized. Visualization, velocity distribution, and spray growth rate with different nozzle configurations have been mainly focused using a 2-D PDPA system. The results indicated that trajectories along the centerline regardless of their configurations has its potential core region. However, the phenomena from the peripheral part need to be meticulously considered. Accordingly, it is evident that quantitative velocity deficits at the outer region are outstanding due to the aerodynamical drag and entrainment.

A Study of 2D Micro-patterning of Biodegradable Polymers by MEA (Multi Electrode Array)-based Electrohydrodynamic (EHD) printing (다중 전극 어레이 기반 전기수력학 인쇄 기술을 이용한 생분해성 고분자의 2차원 마이크로 패터닝 연구)

  • Hwang, Tae Heon;Ryu, WonHyoung
    • Particle and aerosol research
    • /
    • v.13 no.3
    • /
    • pp.111-118
    • /
    • 2017
  • Electrohydrodynamic (EHD) printing with the aid of strong electric fields can generate and pattern droplets that are smaller than droplets by other printing technologies. Conventional EHD printing has created two-dimensional (2D) patterns by moving its nozzle or a substrate in X and Y directions. In this study, we aimed to develop an EHD system that can create 2D patterns using a multielectrode array (MEA) without moving a nozzle or substrate. In particular, printing ink mixtures of biodegradable polymers and model dyes was patterned on a thin film made of another biodegradable polymer. Without movement of a nozzle and substrate, stable 2D patterning of minimum $6{\mu}m$ size over a range of about 1 mm away from the nozzle position was achieved by MEA control only. We also demonstrated the possibility of denser 2D pattering of the ink mixtures by moving a target substrate relative to MEA position.

Evaluation Study on the Effects of $NO_x$ Reduction Techniques on the Performance and the Emission Characteristics of Medium Size Gasification Combined Cycle Plant (중급 규모 가스화 복합발전 플랜트의 $NO_x$ 저감 방식이 성능 및 환경특성에 미치는 영향에 관한 평가 연구)

  • Lee, Chan;Seo, Je-Young
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.363-369
    • /
    • 2001
  • Process design and performance evaluation were made for medium-size gasification combined/cogeneration plant. Based on the designed plant process configuration, the effects of $NO_x$ reduction techniques on the $NO_x$ emission, the power output, the efficiency and the stability of plant are investigated by applying various $NO_x$ reduction methods such as unsaturated/saturated nitrogen injection and fuel saturation of gas turbine combustor. The $NO_x$ reduction by nitrogen injection is more remarkable than that by fuel saturation, and its effect can be more enhanced by using saturated nitrogen. In addition, the applications of $NO_x$ reduction techniques accompany the improvement of plant power output and efficiency with the decrease of $NO_x$ emission, while it can cause unstable gas turbine operation.

  • PDF

An Experimental Study on the Emission Characteristics of GTL Fuel with Injection Timings in CRDi Single Cylinder Engine (커먼레일 단기통 엔진에서 GTL 연료의 분사시기 변화에 따른 배출물 특성)

  • Kim, Byoung-Jun;Lee, Yong-Gyu;Choi, Kyo-Nam;Jeong, Dong-Soo;Cha, Kyung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.181-187
    • /
    • 2008
  • Recently, alternative fuels are drawing more attentions due to the increasing need for lower emission characteristics and fuel consumption rate in automotive engines. The GTL(gas to luquid) is the one of most favored candidates. It has higher cetane number(more than 75) and almost negligible sulphur and aromatic contents. Therefore, enhanced emission characteristics are expected even in the application in diesel engines without any modification. In this study, the cylinder pressure and heat release, emission characteristics with fuel injection timings are compared between diesel and GTL fuel in the single cylinder diesel engine. Noticeable reduction in PM, THC and CO emission are observed due to lower sulphur and aromatic contents in GTL. Also, the ignition delay decreased due to higher cetane number of GTL, which slightly decreased the amount of NOx emissions. With the retards of main injection timing, NOx decreases more for the case of GTL, while the level of THC and CO emissions still remains lower than the case of diesel. Therefore, there is much room for the control of injection timing for NOx reduction without sacrificing THC and CO emissions. With the retards of main injection timing, Small size distribution of PM became lager and there amount increased. But from all conditions, size distribution of PM for the case GTL was lower than Diesel.

Spray Characteristics of Closed-type Swirl Injectors with Varying Swirl Chamber Geometry (Closed-type 스월 인젝터의 스월 챔버 형상에 따른 분무특성 연구)

  • Chung, Yunjae;Jeong, Seokkyu;Oh, Sukil;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.8-14
    • /
    • 2015
  • This study has been done as a preliminary work in the process of confirming the modeling and calculation results on the dynamic characteristics of closed-type swirl injector which were performed by Ismailov et al. in Purdue university. Closed-type swirl injectors with replaceable swirl chamber parts were designed and manufactured. The steady state spray characteristics of closed-type swirl injector with varying swirl chamber length and diameter were verified. Mass flow rate was measured with a mass flow meter installed in front of the injector, and liquid film thickness was measured by Lefebvre's method with electrodes installed at the orifice of the injector. Variation of spray cone angle and break-up length were investigated from the spray images captured under different manifold pressure conditions.

Combustion Stability Analysis on Hot-firing Test Results of Regenerative Cooling Combustion Chamber (재생냉각 연소기 연소시험의 연소안정성 분석)

  • Ahn, Kyu-Bok;Lim, Byoung-Jik;Lee, Kwang-Jin;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.15-20
    • /
    • 2009
  • Hot-firing tests were performed on two 30 tonf-class regenerative cooling combustion chambers, with different injector distribution and wall cooling method. In the paper, the combustion stability test results were analyzed and presented. The pressure fluctuation and stability rating test(SRT) results of the combustion chambers were examined to evaluate combustion stability. The combustion chambers exhibited satisfactory results on combustion stability. The RMS values of the chamber pressure fluctuation were less than 3% of the chamber pressure and the decay time of artificial pressure peaks was measured to be around 10% of the reference decay time. It is interesting that the RMS values of pressure fluctuation in the combustion chamber with film cooling are smaller than those in the chamber with cooling injectors at the periphery row.

Preparation of Hybrid Cation Ion Exchange Fibers by Web Spray and Their Adsorption Properties for Ammonia Gas (Web Spray 법을 이용한 복합 양이온교환섬유의 제조 및 암모니아 흡착특성)

  • Park, Seong-Wook;Lee, Hoo-Kun;Rhee, Young-Woo;Jung, Boo-Young;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.479-484
    • /
    • 2007
  • In this study, the hybrid ion exchange fibers (HIEF) were prepared by using web spraying muthod with hot melt adhesive. Characteristics of HIEF and their adsorption properties for ammonia gas were investigated. The ion exchange capacity (IEC) of HIEF was increased with increasing the resin contents and their values were higher than those of pure resin and ion exchange fabrics. The removal efficiency for ammonia gas increased with an increase in packing density of hybrid ion exchange fabrics in the column. The adsorption breakthrough time was 270 min, which was slower than those of the resin and fibers. The maximum value of adsorption for ammonia gas was 94%. The breakthrough time was also increased with increasing the concentration and flow rate of ammonia gas. The reaction constant(k) for ammonia gas was increased with increasing the concentration and flow rate of the gas, while it was decreased an the mass was increased.