• 제목/요약/키워드: 분무열분해

검색결과 130건 처리시간 0.024초

The evaluation of electrical properties for $LiNi_xMn_{2-x}O_4$ Nano powders by Ultra sonic pyrolysis (초음파 분무연소법에 의한 $LiNi_xMn_{2-x}O_4$ 분말의 전기적 특성 평가)

  • Oh, Hyo-Jin;Lee, Nam-Hee;Yoon, Cho-Rong;Czoska, Anna;Nam, Sang-Chul;Park, Kyeong-Soon;Lee, Nae-Sung;Kim, Sun-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2006년도 영호남 합동 학술대회 및 춘계학술대회 논문집 센서 박막 기술교육
    • /
    • pp.113-116
    • /
    • 2006
  • 자발착화 연소반응법 (Glycine Nitrate Process)을 응용한 초음파분무열분해장치를 이용하여 이차전지의 양극재료인 Ni치환형 $LiMn_2O-4$ 분말을 합성하였고, 각각의 하소온도에 따른 분말의 특성을 평가하였다. 전구용액은 산화제로 $Mn(NO_3)_2{\cdot}6H_20$EX>, $LiNO_3$, $Ni(NO_3)_2{\cdot}6H_20$를 사용하였고, 자발착화 에너지를 공급하기 위한 연료로는 glycine를 사용하였다. 분말의 결정상을 확인하기 위해 X-선 회절 시험을 시행하였으며, 각각의 조성별로 ICP측정결과 여러 조성들($LiNi_xNm_{2-x}O_4\;0{\leq}x{\leq]0.5$) 중 $LiNi_{0.3}Nm_{1.7}O_4$의 분말이 비교적 우수한 특성을 나타내었지만, 전기화학적 특성 평가 결과 이론용량값에 미치지 못하는 용량값을 나타내었다. 이것은 분말 합성 시 미량의 미 반응된 유기물들이 분말 표면에 피복되어 전기적 성질을 변화시키고 있기 때문임을 확인하였다. 이러한 특성을 개선하고자 추가적으로 하소 공정을 실시하여 전지의 성능를 평가 하였다. 분말의 미세구조와 형태, 크기, 전기 화학적 특성을 관찰하여 하소 전 후의 분말을 비교하였다.

  • PDF

Numerical Study on the Evaporation Characteristics of Biocrude-oil Produced by Fast Pyrolysis (급속열분해를 통하여 생산된 바이오오일 액적의 증발 특성에 관한 수치해석적 연구)

  • Choi, Sang Kyu;Choi, Yeon Seok;Kim, Seock Joon;Han, So Young
    • Applied Chemistry for Engineering
    • /
    • 제27권6호
    • /
    • pp.646-652
    • /
    • 2016
  • Biomass is regarded as one of the promising energy sources to deal with the depletion of fossil fuels and the global warming issue. Biocrude-oil can be produced through the fast pyrolysis of biomass feedstocks such as wood, crops, agricultural and forestry residues. It has significantly higher viscosity than that of conventional petroleum fuel and contains solid residues, which can lower the spray and atomization characteristics when applied to the burner. In addition, biocrude-oil consists of hundreds of chemical species derived from cellulose, hemicellulose and lignin, and evaporation characteristics of the biocrude-oil droplet are distinct from the conventional fuels. In the present study, a numerical study was performed to investigate the evaporation characteristics of biocrude-oil droplet using a simplified composition of the model biocrude-oil which consists of acetic acid, levoglucosan, phenol, and water. The evaporation characteristics of droplets were compared at various surrounding air temperatures, initial droplet diameters, and ethanol mixing ratios. The evaporation time becomes shorter with increasing air temperature, and it is much sensitive to the air temperature particularly in low temperature ranges. It was also found that the biocrude-oil droplet evaporates faster in cases of the smaller initial droplet diameter and larger ethanol mixing ratio.

Effect of Preparation Conditions on the Characteristics of Fe Powders Prepared by Spray Pyrolysis as Heat Source Material (분무열분해공정 하에서 합성 조건이 열원 소재로서의 Fe 분말 특성에 미치는 영향)

  • Koo, Hye-Young;Kim, Jung-Hyun;Hong, Seung-Kwon;Han, Jin-Man;Ko, You-Na;Lee, Su-Min;Ko, Da-Rae;Kang, Yun-Chan;Kang, Seung-Ho;Cho, Sung-Baek
    • Korean Journal of Materials Research
    • /
    • 제19권11호
    • /
    • pp.581-587
    • /
    • 2009
  • Fe powders with elongated and aggregated structure as heat pellet material for thermal battery applications were prepared by spray pyrolysis under various preparation conditions. The precursor powders with spherical shapes and hollow morphologies turned into Fe powders after reduction at a temperature of 615$^{\circ}C$ under 20% $H_2$/Ar gas. The powders had pure Fe crystal structures irrespective of the preparation conditions of the precursor powders in the spray pyrolysis. The morphologies and mean sizes of the Fe powders are affected by the preparation conditions of the precursor powders in the spray pyrolysis. Therefore, the ignition sensitivities and the burn rates of the heat pellets formed from the Fe powders prepared by spray pyrolysis are affected by the preparations of the precursor powders. The Fe powders prepared under the optimum preparation conditions have a BET surface area of 2.9 $m^2g^1$. The heat pellets prepared from the Fe powders with elongated and aggregated structure have a good ignition sensitivity of 1.1W and a high burn rate of 18 $cms^1$.

Photocatalytic Activity of ZnO Nanoparticles and Their Stability in Water Solvent (산화아연 입자의 광촉매 효과와 물 용매에서의 안정성)

  • Nam, Sang-Hun;Boo, Jin-Hyo
    • Journal of the Korean Vacuum Society
    • /
    • 제22권3호
    • /
    • pp.138-143
    • /
    • 2013
  • Recently, ZnO nanoparticles have been studied in various application fields due to their physico-chemical properties. In this study, we have researched on the ZnO photocatalytic activity by redox reaction. ZnO nanoparticles have low photocatalytic activity in comparison with $TiO_2$ nanoparticles because it has the disadvantage that the formation of $Zn(OH)_2$ in water solvent. Therefore, we were synthesized ZnO nanoparticles by spray-pyrolysis method, and then studied on stability in water solvent. At the results, the water treated-ZnO nanoparticles showed higher photocatalytic activity than non-treated ZnO nanoparticles because molecular $H_2O$ was increased onto the ZnO surface under the water treatment. Also, we confirmed that the ZnO nanoparticles synthesized by spray-pyrolysis method is very stable in the water solvent.

Electrochemical Properties of Fluorine-Doped Tin Oxide Nanoparticles Using Ultrasonic Spray Pyrolysis (초음파 분무 열 분해법을 통해 제조된 불소 도핑 된 주석 산화물 나노 입자의 전기화학적 특성)

  • Lee, Do-Young;Lee, Jung-Wook;An, Geon-Hyoung;Riu, Doh-Hyung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • 제26권5호
    • /
    • pp.258-265
    • /
    • 2016
  • Fluorine-doped tin oxide (FTO) nanoparticles have been successfully synthesized using ultrasonic spray pyrolysis. The morphologies, crystal structures, chemical bonding states, and electrochemical properties of the nanoparticles are investigated. The FTO nanoparticles show uniform morphology and size distribution in the range of 6-10 nm. The FTO nanoparticles exhibit excellent electrochemical performance with high discharge specific capacity and good cycling stability ($620mAhg^{-1}$ capacity retention up to 50 cycles), as well as excellent high-rate performance ($250mAhg^{-1}$ at $700mAg^{-1}$) compared to that of commercial $SnO_2$. The improved electrochemical performance can be explained by two main effects. First, the excellent cycling stability with high discharge capacity is attributed to the nano-sized FTO particles, which are related to the increased electrochemical active area between the electrode and electrolyte. Second, the superb high-rate performance and the excellent cycling stability are ascribed to the increased electrical conductivity, which results from the introduction of fluorine doping in $SnO_2$. This noble electrode structure can provide powerful potential anode materials for high-performance lithiumion batteries.

The Effect of Solvent and Carrier Gas on the Deposition Rate aid the Properties of Pyrosol Deposited $SnO_2$ : F Transparent Conducting Films (용매와 반송가스가 초음파 분무 열분해에 의한 불소 도핑 이산화 주석 투명전도막의 성장속도와 특성에 미치는 영향)

  • Yoon, Kyung-Hoon;Song, Jin-Soo;Kang, Gi-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.174-177
    • /
    • 1991
  • Fluorine-doped $SnO_2\;(SnO_2:F)$ films were prepared in ordinary atmosphere on borosilicate glass substrates using pyrosol deposition method starting from the solutions composed of $SnCl_4-5H_2O-NH_4F-CH_3OH-H_2O-HCl$ in an attempt to develop transparent conductors for use in amorphous silicon (a-Si) solar cello. The deposition rate of films increased with the increase in the content of $H_2O$, whereas it decreased with increasing the content of $CH_3OH$. When air was used as the carrier gas, the lowest electrical resistivity was obtained from a solution having $CH_3OH/H_2O$ mol ratio of about $2{\sim}3$ in the solution. The use of $N_2$ of the same flow rate as the carrier gab resulted always in the high resistive films, but the resistivity of the films decreased continuously with the increase in the content of $H_2O$. The surface morphology and preferred orientation of films were also affected by the solvent composition and the content of HCl in the solution. The room-temperature resistance of the films were fairly stable after heat-treatments up to $600^{\circ}C$.

  • PDF

Field Emission Characteristics of Double-walled Carbon Nanotubes Related with Hydrochloric Acid Treatment (이중벽 탄소나노튜브의 염산처리 시간에 따른 전계방출 특성 평가)

  • Jung, Da-Mi;Sok, Jung-Hyun
    • Journal of the Korean Vacuum Society
    • /
    • 제20권1호
    • /
    • pp.70-76
    • /
    • 2011
  • High-quality double-walled carbon nanotubes (DWCNTs) were synthesized by catalytic decomposition method at $800^{\circ}C$ using Tetrahydrofuran. The as-synthesized DWCNTs typically have catalytic impurities and amorphous carbon, which were removed by two-step purification process, consisting of thermal oxidation and H2O2, HNO3, HCl treatment. The DWCNT suspension was prepared by dispersing the purified DWCNTs in an aqueous sodium dodecylbenzenesulfonate solution with horn-type sonication. This was then sprayed on ITO glass to fabricate CNT field emitters. The quality of purified DWCNTs was estimated with X-ray diffraction and Thermal Gravity Analysis. The field emission properties were improved by increasing the process time of HCl treatment.

Effect of Reaction Factors on the Fabrication of Nano-Sized Indium Oxide Powder by Spray Pyrolysis Process (분무열분해공정에 의한 인듐 산화물 나노 분말 제조에 미치는 반응인자들의 영향)

  • Yu Jae-Keun
    • Journal of Powder Materials
    • /
    • 제11권6호
    • /
    • pp.493-502
    • /
    • 2004
  • In this study, nano-sized indium oxide powder with the average particle size below 100 nm is fab-ricated from the indium chloride solution by the spray pyrolysis process. The effects of the reaction temperature, the concentration of raw material solution and the inlet speed of solution on the properties of powder were studied. As the reaction temperature increased from 850 to $1000^{\circ}C$, the average particle size of produced powder increased from 30 to 100 nm, and microstructure became more solid, the particle size distribution was more irregular, the intensity of a XRD peak increased and specific surface area decreased. As the indium concentration of the raw material solution increased from 40 to 350 g/l, the average particle size of the powder gradually increased from 20 to 60 nm, yet the particle size distribution appeared more irregular, the intensity of a XRD peak increased and spe-cific surface area decreased. As the inlet speed of solution increased from 2 to 5 cc/min., the average particle size of the powder decreased and the particle size distribution became more homogeneous. In case of the inlet speed of 10 cc/min, the average particle size was larger and the particle size distribution was much irregular compared with the inlet speed of 5 cc/min. As the inlet speed of solution was 50 cc/min, the average particle size was smaller and microstructure of the powder was less solid compared with the inlet speed of 10 cc/min. The intensity of a XRD peak and the variation of specific area of the powder had the same tendency with the variation of the average par-ticle size.

Fabrication of Spherical SiO2 Powders from Aqueous SiO2 Sol via Ultrasonic Pyrolysis (초음파 분무 열분해 공정을 이용한 수계 SiO2 Sol로부터의 구형 SiO2 분말 합성)

  • Lee, Ji-Hyeon;Hwang, Hae-Jin;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • 제26권10호
    • /
    • pp.570-576
    • /
    • 2016
  • Using the ultrasonic pyrolysis method, spherical $SiO_2$ powders were synthesized from aqueous $SiO_2$ sol as a starting material. The effects of pyrolysis conditions such as reaction temperature, $SiO_2$ sol concentration, and physical properties of precursor were investigated for the morphologies of the resulting $SiO_2$ powders. The particle size, shape, and crystallite size of the synthesized $SiO_2$ powders were demonstrated according to the pyrolysis conditions. Generally, the synthesized $SiO_2$ particles were amorphous phase and showed spherical morphology with a smooth surface. It was revealed that increased crystallite size and decreased spherical $SiO_2$ particle size were obtained with increases of the pyrolysis reaction temperature. Also, quantity of spherical $SiO_2$ particles decreased with the decrease in the concentration and surface tension of the precursor.

Synthesis and Characterization of Bi2Sr2Ca2Cu3Ox Powders by Ultrasonic Spray Pyrolysis Method (Ultrasonic Spray Pyrolysis 법에 의한 Bi2Sr2Ca2Cu3Ox 분말합성 및 특성평가)

  • Bae, Bung-Su;Jung, Sang-Jin;Lee, Bong;Moon, Chang-Kwun;Choi, Hee-Lack
    • Journal of Ocean Engineering and Technology
    • /
    • 제24권6호
    • /
    • pp.86-91
    • /
    • 2010
  • Superconductor material $Bi_2Sr_2Ca_2Cu_3O_x$(Bi-2223) powders were synthesized by ultrasonic spray pyrolysis method. It is clear that Bi-2223 phase more than Bi-2212 phase was acquired at sufficient synthesized time. Best condition for Bi-2223 phase was synthesizing temperature at $860^{\circ}C$. We also investigated the effects for concentrations and viscosities of starting liquid precursor as well as temperature distribution of reacting furnace. The size of synthesized powder was decreased by decreasing the concentration of starting liquid precursor. Modified reacting furnace with four different temperature heating zones gave us successful results for desirable nano-powder including $Bi_2Sr_2Ca_2Cu_3O_x$ phase. Citric acid addition to starting liquid precursor showed increasing of the size for synthesized powder. Bi-2223 single phase was acquired from Bi2223 and Bi-2212 mixed phases through heat treatment in box furnace at 24 hours.