• Title/Summary/Keyword: 분무벽면충돌

Search Result 38, Processing Time 0.02 seconds

RADIAL FLOW AND DROPLETS SPLASH OBSERVED ON A WALL IMPINGEMENT JET (벽면 충돌분무의 반경방향 흐름과 액적 비산에 관한 고찰)

  • KIM, Young-Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.37-42
    • /
    • 2000
  • 액체 분무가 벽면의 평평한 면에 충돌할 때의 거동에 대해 실험을 통하여 조사하였다. 각 분사노즐과 벽면까지의 거리 그리고 분사 속도에 있어서 충돌점에서의 액체 액막의 비산 거동과 평면에서의 액막의 흐름에 대하여 관찰하였다. 충돌점에서 비산하는 액적의 비산율을 정량적으로 측정하였다. 분사속도가 증가에 의해 충돌 거동은 5개의 영역으로 분류되며, 분사속도가 증가하면 비산율도 증가하게 된다. 또한, 충돌거리가 분무의 분열점보다 길때의 분사량의 약 반 정도가 비산하게 되는 결과가 얻어졌다.

  • PDF

Droplets Splash Related with a Wall Impingement of Liquid Jet (액체 분무의 벽면 충돌분무에 의한 액적 비산)

  • KIM, Young-Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.5-11
    • /
    • 2004
  • 벽면에 충돌하는 액체 분무의 충돌 거동과 액적 비산에 관하여 실험을 통하여 조사하였다. 액체 분무는 홀노즐에 의해 직경 40mm의 충돌판에 분사하게 된다. 액체 분무는 반경방향으로 퍼져나가 5개의 영역으로 분류되어 나타내게 된다. 난류 혹은 층류 분무의 경우, 충돌판에 충돌한 후 두꺼운 액막을 형성하게 되며, 이러한 상태에서 충돌하는 분무의 비산량은 매우 적으며 충돌 거리에 영향을 받지 않는다. 한편, 파동이 있는 분무의 충돌은 수력도약(Hydraulic jump)과 함께 반경방향으로 엷은 액막을 형성하게 되며 비산율도 증가하게 된다. 액체분무의 초속도가 증가하면 비산율도 증가하게 된다. 분열이 일어난 후에 충돌하는 파동 분무의 비산율은 분열이 일어나기 전에 비해 약 2~3배 정도 크게 나타난다. 비산율은 웨버수(Weber number)를 이용하여 요약할 수가 있다.

  • PDF

Numerical Modeling of Droplet/Wall Impingement Process (연료분무의 벽면충돌과정 해석에 대한 수치모델링)

  • Moon, Y.W.;Yu, Y.W.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.4 no.2
    • /
    • pp.10-18
    • /
    • 1999
  • The droplet/wall impingement processes in the diesel-like environment are numerically modeled. In order to evaluate the predictive capability of the droplet/wall impingement model developed in this study, computations are carried out for two ambient temperature conditions. Numerical results indicate that the present droplet/wall impingement model reasonably well predicts the basic features of the impinging spray dynamics.

  • PDF

Wall Impingement Behavior and Droplet Size Measurement in Diesel Spray (디젤분무의 벽면충돌거동 및 분무입경측정)

  • 이장희;김태권;최인수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.39-49
    • /
    • 1994
  • An experimental investigation was undertaken in a diesel spray to evaluate wall impingement behavior and droplet size distribution. Emphasis is placed on the possibility of the application for new combustion type which is based on OSKA-D type. Visualization were employed using optical scheme which was a spark shadowgraphy to observe the behavior of wall impingement caused by diesel spray vertically injected at the center of the combustion chamber. Droplet size measurements using Malvern system were made to quantify the visual observations with surface diameter of impingement. The effects of the surface dia. variation on the droplet size during injection with the wall impingement spray are discussed. It was found that for the wall impingement spray the droplet size becomes greatly small rather than the spray without the wall impingement and the droplet deposition rate of the injection fuel is decreased as the surface area of impingement becomes small.

  • PDF

The Behavior Characteristics of Diesel Impinging Spray on the Room Temperature Impinging Disk (상온 충돌판에서의 디젤 충돌 분무의 거동 특성)

  • Cha, K.J.;Se, G.I.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.1 no.4
    • /
    • pp.24-31
    • /
    • 1996
  • This study addresses the behavior characteristics of diesel spray injected on the impinging disk with the room temperature. The models of impinging spray are the stick, the reflect and the wall jet model In the initiative of the fuel injection the impinging spray was the reflect model. because the momentum of droplets was very large. This model developed to the wall jet model according to the time approaches. On the low temperature disk the fuel film was made by the attachment of the droplets with low Weber number. The thickness of impinging spray was increased when the disk approached to the nozzle tip. Mathematical analysis for calculation with the behavior of impinging spray have to consider the reflecting effect and the influence of the fuel film.

  • PDF

Numerical Analysis of Geometric Effects on Spray Characteristics in Small Direct-injection Diesel Engines (소형디젤기관 내 충돌부의 기구학적 조건에 대한 분무특성의 수치적 해석)

  • 류성목;차건종;김덕줄;박권하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.55-65
    • /
    • 1999
  • Many researches have been investigating small direct-injection diesel engines using the spray impacting on walls. Those systems have one or more raised pips to break-up the fuel and spread it widely toward a desired direction in a combustion chamber. In this study, the sizes and heights of the pips are determined by using a computational fluid dynamics code employing non-orthogonal grid systems. In order to find out the suitable pip-shape to a small chamber, the spray behaviors, occupied spary volumes and averaged droplets sizes are calculated with the variation of shape of the pip, such as, size and heights and inclined degree. The desired shape of the impinging land is proposed for the design of combustion system in small diesel engines.

  • PDF

A Study on Areas of Application of a Extended Collision Model in a Wall Impaction Spray Calculation (벽면충돌분무 계산에서 확장충돌모델의 적용범위에 관한 고찰)

  • Park, Gwon-Ha;Jeong, Chang-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1013-1020
    • /
    • 2001
  • This paper addresses to the area where the extended collision model is applied. In order to find the optimum shape of wall sprays, the extended model is applied to the nearest cells of just over the impaction wall, spray core or over all. The droplet distribution, wall spray radii, heights and gas flows are shown in all the cases. Those results show that the best spray shape represents in the case applying the extended model just on the impinging wall.

A study on the characteristics of gasoline spray to impinge on wall (벽면에 충돌하는 가솔린 분무의 특성에 관한 연구)

  • Lee, G.Y.
    • Journal of ILASS-Korea
    • /
    • v.10 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • Even though a relatively complete knowledge base has been established for diesel sprays, much of the knowledge cannot be directly translated to correlate the characteristics of gasoline spray. The macroscopic characteristics of gasoline impingement spray was investigated with photographic and image processing technique by Particle Motion Analysis System. The injector with single hole nozzle diameter of 0.28 mm was used in this experiment and the injection duration was selected as 10 msec. The injection pressure with 0.3, 0.35, and 0.4 MPa, impingement distance or 70, 100 and 130m, impingement angle or 0.15, 30 and $45^{\circ}$ were employed for the variables to affect the spray characteristics of impinging spray. It is clear that there is the analogy on the spray tip penetration between the gasoline impinging jet and diesel free jet. The spray tip penetration of impinging gasoline spray is proportional to the quarter power of the time after start of injection. The maximum height of impinging gasoline spray is also proportional to the quarter power of the time regardless of impingement distance, impingement angle and injection pressure. In addition, the effect of impingement angle on the spray tip penetration is significant according to the time after start of injection, even though there is minor effect in the initial stage of time after start of injection. Moreover, there is no remarkable effect of injection pressure on the spray tip Penetration under the experimental condition used in this study.

  • PDF

Modeling of Liquid Droplet Atomization and Spray Wall Impingement of Diesel Sprays (디젤 엔진 분무의 액적 미립화 모델 및 벽면 충돌 모델에 관한 연구)

  • Kim, Hongsuk;Sung, Nakwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.69-81
    • /
    • 1999
  • In this research computational methods for the droplet atomization and spray wall impingement are studied for the non-evaporating diesel fuel spray. The TAB(Taylor Analogy Breakup) model and Wave model are compared with experiments in order to describe droplet atomization process. The Watkins model and O'Rourke model are compared to simulate the spray wall impingement. As a result, It is found that the application of the Wave model has a good agreement with the experimental data in the case of high pressure injection. With regard to wall Impingement phenomena, it is found that the Watkins model is appropriate to the high temperature cylinder wall condition, while the O'Rourke model is appropriate to cold starting problem.