• Title/Summary/Keyword: 분무노즐

Search Result 390, Processing Time 0.033 seconds

Spray Characteristics of the Rotating Fuel Nozzle with Orifice Geometry (회전연료노즐 형상변경에 따른 분무특성)

  • Jang, Seong-Ho;Choi, Hyun-Kyung;Lee, Dong-Hun;You, Gyung-Won;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.240-243
    • /
    • 2008
  • An experimental study was conducted to understand spray characteristics of rotating fuel nozzle by using high speed rotational system. The experimental apparatus consist of a fuel injection system, high speed rotational system, and acrylic case. The test is performed with several diameters and number of injection orifices. Spray characteristics such as droplet size and velocity are measured by PDPA(Phase Doppler Particle Analyzer). From the test results, we could understand the spray characteristics of rotating fuel nozzle with orifice number and diameter.

  • PDF

A Study on the Characteristics of Liquid Jet in Crossflows Using Elliptical Nozzles (타원형 노즐을 이용한 횡단류 유동에서 액체제트 특성 연구)

  • Song, Yoonho;Hwang, Donghyun;Ahn, Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.320-324
    • /
    • 2017
  • Effect of elliptical orifice on the spray characteristics of liquid jet ejecting into subsonic crossflows were experimentally studied. Circular/elliptical plain-orifice injectors, which had different ratios of the orifice length to diameter and major axis to minor axis, were used for transverse injection. Compared with the previous research, breakup lengths of elliptical nozzles are shorter than circular nozzles at all experimental condition. Cavitation/hydraulic flip are considered as a reduction in the breakup length at all circular/elliptical nozzle. In the case of liquid column trajectories, major axis which was placed to the crossflows, increases the frontal area of the liquid column exposed to the crossflows. Hence, the aerodynamic force exerted on the jet is increased and the penetration depth is reduced.

  • PDF

Combustion Characteristics of the Slinger Combustor (슬링거 연소기의 연소특성)

  • 이강엽;이동훈;최성만;박정배;박영일;김형모;한영민
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.173-178
    • /
    • 2003
  • The study was performed to understand combustion characteristics of the slinger combustor. Liquid fuel is discharged radially outwards through injection holes drilled in the high speed rotating shaft. We observed atomizing characteristics with variation of fuel nozzle rotating speed by using PDPA system. The mean drop diameter highly depends on fuel nozzle rotating speed. In KARI combustion test facility, Ignition and combustion tests were performed by using real scale combustor. In the test results, ignition and combustion efficiency were increased according to increasing fuel nozzle rotating speed. The measured radial temperature distribution at the combustor exit shows stable and fairly good distribution.

  • PDF

Experimental study on the spray density distribution of water spray system in road tunnel (터널 물분무소화설비의 살수밀도분포에 대한 실험연구)

  • So, Soo-Hyun;Park, Kyung-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Spray density of the water spray system which is installed in long road tunnels and hazardous vehicle tunnels is applied without proper performance assessment process. In this study, the requirements of Spray Density Guidelines at the standard pressure is investigated through spray test set up the nozzle of a water spray system in a simulated road tunnel. The results showed that all the nozzles used in the test area did not meet the requirements of the Guidelines. The absence of performance test codes and inspection process on the nozzle at real scale in tunnels may have caused this practice. Therefore, it is suggested that the performance test regulations of the nozzle on the water spray system is established in order to properly assess the system performance.

Spray Characteristics of Spray Nozzles Used for Greenhouse Cooling (온실 냉방용 분무노즐의 분무 특성)

  • 서원명;이종열;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.7 no.4
    • /
    • pp.298-310
    • /
    • 1998
  • This research was carried out to find out spray characteristics of 3 types of spray nozzle to be used for greenhouse cooling. Following results were obtained from this experimental study. Water amounts sprayed with each nozzle were increased with the spraying pressure. However the increment of sprayed amount with the increase of spraying pressure were not consistent regardless of nozzle types. For the whole tested spraying pressures of nozzle-type I, II, III, the minimum droplet sizes were about 1.7~2.5$\mu$m, 1.7~2.2$\mu$m and 1.7~2.2$\mu$m, respectively, and the maximum droplet sizes were about 44~60$\mu$m, 52~71$\mu$m and 45~61$\mu$m, respectively, and the average droplet sizes were about 23~38$\mu$m, 19~24$\mu$m and 17~25$\mu$m, respectively The most appropriate spraying pressures of nozzle-type I, II, III were analyzed to be 70kgf/$\textrm{cm}^2$, 30kgf/$\textrm{cm}^2$ and 30kgf/$\textrm{cm}^2$, respectively, and their sprayed amounts were about 124mL/min, 103mL/min and 84mL/min, respectively, and average droplet sizes were 22.6$\mu$m, 21.8$\mu$m and 20.6$\mu$m, respectively. Also, with the order of nozzle-type I, II, III, droplet size distributions less than 30$\mu$m were 95.4%, 85.7% and 79.0%, respectively, and the distributions larger than 40$\mu$m were 0.2%, 1.28% and 1.67%, respectively. However most all of the droplet size were less than 50$\mu$m.

  • PDF

Effect of injection pressure on the atomization characteristics of a liquid sheet-type swirl injector for Urea-SCR system (Urea-SCR시스템 액막형 선회분사기의 분사압력변화에 따른 무특성에 관한 연구)

  • Kim, Duckjin;Yang, Donguk;Lee, Jeekeun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.510-519
    • /
    • 2013
  • In this study, the spray characteristics of a pressure swirl atomizer classified into a liquid sheet-type swirl nozzle for Urea-SCR system were investigated experimentally with the variation of injection pressure. The length to diameter ratio ($l_o/d$) of the nozzle was 3.1, and the swirler was set inside the nozzle tip to give injecting fluid angular momentum. The injection duration of the nozzle was controlled by PWM (pulse width modulation) modes. The development processes of the spray were imaged by a 2-D PIV system, and the change of spray angle was measured. The atomization characteristics, including axial velocity and SMD, were measured using a 2-D PDA system with the injection pressures at room temperature and ambient pressure conditions. As the experimental results, the injection pressure had a significant impact on the spray structure showing a different shape around the spray leading edge, and the smaller SMD was observed with increasing injection pressures, which was similar to that of the previous work.

미세 물분무 노즐의 분사특성 실험 결과 분석

  • Kim, Chang-Seop;Yu, U-Jun;Gwon, Seong-Pil;Yeom, Mun-Cheon;Kim, Chang;Han, Yong-Taek
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.11a
    • /
    • pp.229-229
    • /
    • 2013
  • 본 연구에서는 미세 물분무 노즐의 소화성능을 분석하기 위해 유량계수, 방사거리, 방사각도, 그리고 작동압력에 따라 분사되는 물입자 크기를 측정하였다. 이를 위해서 이중 구조의 미세 물분무 노즐 LPN-61과 LPN-63을 제작하였으며, 미분무 소화설비를 구성하여 이중구조 노즐의 형상에 따라서 유동특성을 정량화하였다. 그 결과 LPN-61은 유량계수 5.116, 방사각 $120^{\circ}{\sim}125^{\circ}$로 작동압력이 $4kgf/cm^2$에서 $10kgf/cm^2$까지 증가함에 따라서 SMD는 $127{\mu}m$정도에서 $88{\mu}m$까지 입자 크기가 감소하였으며, LPN-63은 유량계수 5.121, 방사각도 $120^{\circ}{\sim}125^{\circ}$로 동일한 작동압력 범위에서 SMD는 $108{\mu}m$에서 $80{\mu}m$까지 감소하는 것을 확인하였다.

  • PDF

The Effect of the Y-jet Nozzle Exit Orifice Shape on Asymmetric Spray (Y-jet 노즐의 출구오리피스 형상이 비대칭 분무에 미치는 영향)

  • Baik, Gwang Yeol;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.33-39
    • /
    • 2021
  • Y-jet nozzle has a wide fuel flow rate range and turn-down ratio, thus, it is used in industrial boilers, furnace and agricultural atomizer. However, it has asymmetrical spray characteristics due to the nozzle design factors. Therefore, in this study, asymmetric spraying characteristics of the elliptical Y-jet nozzle was studied by using the lab-scale spray apparatus. As a result, the elliptical Y-jet nozzle had lower gas mass flow rate than circular Y-jet nozzle at same gas pressure, because of bigger shear stress due to the wider inner surface at the elliptical Y-jet nozzle. Larger SMD was measured on the elliptical Y-jet nozzle than the circular Y-jet nozzle. When SMD was measured in the X_Axis direction at the same gas mass flow rate, the elliptical Y-jet nozzle with an aspect ratio of 2:1 showed greater asymmetry than the others.

분무진공동결건조기 개발

  • Ryu, Gyeong-Ha;Ban, Byeong-Min;Kim, Jae-Hyeong;Son, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.258-258
    • /
    • 2013
  • 최근 건조 제품의 양질화, 고급화 및 편의화가 요구되어 이를 충족시키기 위한 새로운 건조방법이 계속 개발 되어 왔다. 이러한 방법들 중에서 저온과 진공하에서 건조가 이루어지는 진공 동결 건조는 가장 완벽한 건조 방법으로 최근 실용화 되고 있다. 진공동결건조란 건조의 한 종류로 수분을 함유한 시료를 동결시킨 후 진공펌프를 이용하여 수증기압을 3중점 이하로 낮추어 얼음을 직접 증기로 만드는 승화의 원리에 의해서 얻어진다. 분무진공동결건조의 특징은 (1) 물리적구조의 보존성, (2) 화학적인 안정성, (3) 생물학적인 활동의 보존성, (4) 제품의 높은 복원성 및 재생성이다. 따라서 분무진공동결건조 기술은 크게 진공, 분무, 동결, 건조, 멸균 등과 같은 요소기술의 복합기술이라 할 수 있다. 분말을 제조하기 위해서 진공동결건조 후 분쇄하는 방법을 사용하나 본 방법에서는 정밀화학품 제조를 위해서 분무진공동결건조 방식을 사용한다. 이를 통하여 적당한 크기인 5~10 um의 입경 제조가 가능하고, 공기동력학적인 입경이 기존 방식에 비해 작아서 허파까지의 운반효율이 1.5~2배 우수하다. 화학, 의학 분야에서의 분무동결 건조는 주로 민감한 제품, 즉 생물학적 고유성의 손상 없이 물을 제거하는데 사용되어 영구적으로 저장 가능한 상태로 보관할 수 있으며 물의 첨가로 원상태로 복구할 수 있어서 매우 각광을 받고 있다. 의약용 냉동건조 제품은 항생물질, 박테리아, 혈청, 백신, 검사 약물, 단백질을 포함하는 생물공학 제품들, 세포, 섬유, 화학제품 등이 있으며 주로 vial 또는 ampule 상태로 건조가 이루어진다.본 연구에서는 원료를 $-194^{\circ}C$의 액체질소에 분무시켜 동결된 미립자를 형성한 후 진공 및 저온상태에서얼음의 승화(sublimation)에 기반한 1차 건조와 수증기 탈착(desorption)에 기초한 2차 건조 과정으로 구성된 분무진공동결건조기를 개발하였다. 분무동결 과정의 해석을 통해 2유체식 노즐을 통해 분무된 미세 입경의 액적이 액체 질소 표면까지 도달하는 회수률, 분무 노즐의 위치, 운전 조건 및 용기의 설계의 최적화를 수행하였다. 초기 액적속도, 분무노즐의 높이, 흡입구 추가에 따른 액적 유동 및 회수의 특성을 제시하였으며 이를 통한 분사시스템 고도화 가능성을 제시하였다. 구형의 미세 입자가 적층된 제품의 동결건조 공정의 해석은 흡착승화 모델(sorption sublimation model)을 기반으로 다음과 같은 열전달, 물질전달, 상변화 모델을 고려하여 유도되었다. 분무노즐 및 냉동/진공 배기계 시작품을 개발하여, 표면의 고다공도를 갖춘 입경 3~20 m 정도의 시료를 얻을 수 있으며, 동역학적 입경 5 m 충족함을 확인하였다.

  • PDF

The Atomization Mechanism and Spray Characteristics of Drum Type Rotary Atomizer (드럼형 회전연료노즐의 미립화 기구 및 분무특성 연구)

  • Lee, Dong-Hun;Choi, Hyun-Kyung;Choi, Seong-Man;You, Gyung-Won;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • The atomization phenomena and spray characteristics of drum type rotary atomizer using centrifugal force from high rotational speed of gas turbine engine shaft were studied through rotary atomizer modeling analysis and experimental method. A test rig for rotary atomization that has range of $5,000{\sim}40,000\;rpm$ was used to make similarity for high speed rotating shaft. Spray visualization methodology and Phase Doppler Anemometry were also used to investigate the atomization mechanism and spray characteristics. We found that the rotating fuel spray has unique breakup process and we have to make breakup point earlier through increasing rotating speed to improve atomization performance.