• Title/Summary/Keyword: 분류 코드

Search Result 613, Processing Time 0.03 seconds

An automatic Industrial/Occupational Code Classification Tool Using Information Retrieval Technique (정보검색 기법을 이용한 산업/직업 코드 분류 도구)

  • 임희석;박두순
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.06a
    • /
    • pp.75-78
    • /
    • 2001
  • 본 논문은 통계청에서 실시하는 인구주택 총조사로부터 획득된 각 개인의 직업 및 직종을 기술하고 있는 자연어를 입력받아 입력된 자연어가 의미하는 한국 표준 산업/구업 분류 코드의 후보들을 생성하는 산업/직업 코드 분류 도구를 제안한다. 코드 분류는 분류할 코드를 문서 범주로 간주하면 문서 분류와 동일한 문제로 생각할 수 있다. 하지만 본 산업/직업 코드 분류 문제는 입력되는 자연어의 길이가 한 두 문장 정도로 매우 짧아 문서 분류에 사용될 자질들이 개수가 주어 기존의 문서 분류 기법을 적용하기 어렵다. 이에 본 논문은 표준 코드를 기술하고 있는 내용을 미리 색인하고 입력된 자연어로부터 질의어를 생성하여 벡터공간모델로 질의어를 검색후 질의어와 일치율이 가장 높은 코드들을 분류될 후보 코드로 계시하는 정보검색 기법을 이용한 산업/직업 코드 분류 도구를 개발하였다.

  • PDF

A Study on Classification of Malware Based on Purpose of Behavioral (목적행위를 기반으로 한 악성코드 분류 방식에 관한 연구)

  • Kim, Ho-Yeon;Park, Min-Woo;Seo, Sangwook;Chung, Tai-Myoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.872-875
    • /
    • 2011
  • 악성코드 개체 수의 급격한 증가와 정형화되지 않은 악성코드 분류 기준 때문에 업체별, 연구기관별 악성코드 분류 방식이 서로 상이하다. 이 때문에 악성코드를 분석하는 분석가들은 모호한 악성코드 분류 방식 때문에 업무에 불필요한 시간이 소요되고 있다. 또한 안티 바이러스 제품을 사용하는 최종 사용자로 하여금 혼란을 유발하고, 악성코드에 대응하기 위해 진행되는 연구에서 악성코드에 대한 정확한 분류 지표가 없어, 연구에 혼선을 빚고 있다. 본 논문에서는 악성코드의 정확한 분류와 새로운 악성코드가 발견되고, 새로운 매체가 출현하여도 이에 유기적으로 대응할 수 있도록 악성코드의 목적행위에 따라서 총 7개 그룹으로 나누었다. 제안 분류 방식을 사용할 경우 분류된 악성코드에 대하여 보다 정확한 정보를 얻을 수 있을 것으로 기대한다.

Convolutional Neural Network-based Malware Classification Method utilizing Local Feature-based Global Image (로컬 특징 기반 글로벌 이미지를 사용한 CNN 기반의 악성코드 분류 방법)

  • Jang, Sejun;Sung, Yunsick
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.222-223
    • /
    • 2020
  • 최근 악성코드로 인한 피해가 증가하고 있다. 악성코드는 악성코드가 속한 종류에 따라서 대응하는 방법도 다르기 때문에 악성코드를 종류별로 분류하는 연구도 중요하다. 기존에는 악성코드 시각화 과정을 통해서 생성된 악성코드의 글로벌 이미지를 사용해 악성코드를 각 종류별로 분류한다. 글로벌 이미지를 악성코드로부터 추출한 바이너리 정보를 사용해서 생성한다. 하지만, 글로벌 이미지만을 사용해서 악성코드를 각 종류별로 분류하는 경우 악성코드의 종류별로 중요한 특징을 고려하기 않기 때문에 분류 정확도가 떨어진다. 본 논문에서는 악성코드의 글로벌 이미지에 악성코드의 종류별 특징을 나타내기 위한 로컬 특징 기반 글로벌 이미지를 사용한 악성코드 분류 방법을 제안한다. 첫 번째, 악성 코드로부터 바이너리를 추출하고 추출된 바이너리를 사용해서 글로벌 이미지를 생성한다. 두 번째, 악성 코드로부터 로컬 특징을 추출하고 악성코드의 종류별 핵심 로컬 특징을 단어-역문서 빈도(Term Frequency Inverse Document Frequency, TFIDF) 알고리즘을 사용해 선택한다. 세 번째, 생성된 글로벌 이미지에 악성코드의 패밀리별 핵심 특징을 픽셀화해서 적용한다. 네 번째, 생성된 로컬 특징 기반 글로벌 이미지를 사용해서 컨볼루션 모델을 학습하고, 학습된 컨볼루션 모델을 사용해서 악성코드를 각 종류별로 분류한다.

A Study on the Advanced Classification and Naming Convention of Malicious Code (개선된 악성 코드 분류지침 및 명명법에 관한 연구)

  • Kwak, Hyo-Seung;Kim, Pan-Koo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11b
    • /
    • pp.1095-1098
    • /
    • 2002
  • 국내외 카 백신업체별로 악성 코드의 분류 체계가 마련되어 있지만 각각의 백신업체별로 분류 체계가 차이가 있고 또한 도스 운영체제 때부터 사용한 분류 체계를 그대로 사용하여 현재의 악성 코드 분류와는 많은 차이를 보이고 있다. 이러한 백신업체들의 악성 코드 분류를 정착하게 분류하는 방법으로 본 논문에서 새로운 악성 코드 분류지침과 분류지침에 의한 명명법을 제안한다. 본 논문에서 제안한 분류지침을 토대로 안티-바이러스 산업 및 악성 코드 연구를 활성화시키는 정책 수립의 기초 자료를 사용한 수 있으며, 악성 코드 정보의 체계화 통합화 표준화 등에 기여할 수 있다.

  • PDF

An automated Classification System of Standard Industry and Occupation Codes by Using Information Retrieval Techniques (정보검색 기법을 이용한 산업/직업 코드 자동 분류 시스템)

  • Lim, Heui Seok
    • The Journal of Korean Association of Computer Education
    • /
    • v.7 no.4
    • /
    • pp.51-60
    • /
    • 2004
  • This paper proposes an automated coding system of Korean standard industry/occupation for census which reduces a lot of cost and labor for manual coding. The proposed system converts natural language responses on survey questionnaires into corresponding numeric codes using information retrieval techniques and document classification algorithm. The system was experimented with 46,762 industry records and occupation 36,286 records using 10-fold cross -validation evaluation method. As experimental results, the system show 87.08% and 66.08% production rates when classifying industry records into level 2 and level 5 codes respectively. The system shows slightly lower performances on occupation code classification. We expect that the system is enough to be used as a semi-automate coding system which can minimize manual coding task or as a verification tool for manual coding results though it has much room to be improved as an automated coding system.

  • PDF

Behavior based Malware Profiling System Prototype (행위기반 악성코드 프로파일링 시스템 프로토타입)

  • Kang, Hong-Koo;Yoo, Dae-Hoon;Choi, Bo-Min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.376-379
    • /
    • 2017
  • 전 세계적으로 악성코드는 하루 100만개 이상이 새롭게 발견되고 있으며, 악성코드 발생량은 해마다 증가하고 있는 추세이다. 공격자는 보안장비에서 악성코드가 탐지되는 것을 우회하기 위해 기존 악성코드를 변형한 변종 악성코드를 주로 이용한다. 변종 악성코드는 자동화된 제작도구나 기존 악성코드의 코드를 재사용하므로 비교적 손쉽게 생성될 수 있어 최근 악성코드 급증의 주요 원인으로 지목되고 있다. 본 논문에서는 대량으로 발생하는 악성코드의 효과적인 대응을 위한 행위기반 악성코드 프로파일링 시스템 프로토타입을 제안한다. 동일한 변종 악성코드들은 실제 행위가 유사한 특징을 고려하여 악성코드가 실행되는 과정에서 호출되는 API 시퀀스 정보를 이용하여 악성코드 간 유사도 분석을 수행하였다. 유사도 결과를 기반으로 대량의 악성코드를 자동으로 그룹분류 해주는 시스템 프로토타입을 구현하였다. 악성코드 그룹별로 멤버들 간의 유사도를 전수 비교하므로 그룹의 분류 정확도를 객관적으로 제시할 수 있다. 실제 유포된 악성코드를 대상으로 악성코드 그룹분류 기능과 정확도를 측정한 실험에서는 평균 92.76%의 분류 성능을 보였으며, 외부 전문가 의뢰에서도 84.13%로 비교적 높은 분류 정확도를 보였다.

An Example-based Korean Standard Industrial and Occupational Code Classification (예제기반 한국어 표준 산업/직업 코드 분류)

  • Lim Heui-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.594-601
    • /
    • 2006
  • Coding of occupational and industrial codes is a major operation in census survey of Korean statistics bureau. The coding process has been done manually. Such manual work is very labor and cost intensive and it usually causes inconsistent results. This paper proposes an automatic coding system based on example-based learning. The system converts natural language input into corresponding numeric codes using code generation system trained by example-based teaming after applying manually built rules. As experimental results performed with training data consisted of 400,000 records and 260 manual rules, the proposed system showed about 76.69% and 99.68% accuracy for occupational code classification and industrial code classification, respectively.

  • PDF

Convolution Neural Network for Malware Detection (합성곱 신경망(Convolution Neural Network)를 이용한 악성코드 탐지 방안 연구)

  • Choi, Sin-Hyung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.166-168
    • /
    • 2018
  • 새롭게 변형되는 대규모 악성코드들을 신속하게 탐지하기 위하여 인공지능 딥러닝을 이용한 악성코드 탐지 기법을 제안한다. 대용량의 고차원 악성코드를 저차원의 이미지로 변환하고, 딥러닝 합성곱신경망(Convolution Neural Network)을 통해 이미지의 악성코드 패턴을 학습하고 분류하였다. 본 논문에서는 악성코드 분류 모델의 성능을 검증하기 위하여 악성코드 종류별 분류 실험과 악성코드와 정상코드 분류 실험을 실시하였고 각각 97.6%, 87%의 정확도로 악성코드를 구별해 내었다. 본 논문에서 제안한 악성코드 탐지 모델은 차원 축소를 통해 10,868개(200GB)의 대규모 데이터에 대하여 10분 이내의 학습시간이 소요되어 새로운 악성코드 학습 및 대용량 악성코드 탐지를 신속하게 처리 가능함을 보였다.

Malware Classification Schemes Based on CNN Using Images and Metadata (이미지와 메타데이터를 활용한 CNN 기반의 악성코드 패밀리 분류 기법)

  • Lee, Song Yi;Moon, Bongkyo;Kim, Juntae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.212-215
    • /
    • 2021
  • 본 논문에서는 딥러닝의 CNN(Convolution Neural Network) 학습을 통하여 악성코드를 실행시키지 않고서 악성코드 변종을 패밀리 그룹으로 분류하는 방법을 연구한다. 먼저 데이터 전처리를 통해 3가지의 서로 다른 방법으로 악성코드 이미지와 메타데이터를 생성하고 이를 CNN으로 학습시킨다. 첫째, 악성코드의 byte 파일을 8비트 gray-scale 이미지로 시각화하는 방법이다. 둘째, 악성코드 asm 파일의 opcode sequence 정보를 추출하고 이를 이미지로 변환하는 방법이다. 셋째, 악성코드 이미지와 메타데이터를 결합하여 분류에 적용하는 방법이다. 이미지 특징 추출을 위해서는 본고에서 제안한 CNN을 통한 학습 방식과 더불어 3개의 Pre-trained된 CNN 모델을 (InceptionV3, Densnet, Resnet-50) 사용하여 전이학습을 진행한다. 전이학습 시에는 마지막 분류 레이어층에서 본 논문에서 선택한 데이터셋에 대해서만 학습하도록 파인튜닝하였다. 결과적으로 가공된 악성코드 데이터를 적용하여 9개의 악성코드 패밀리로 분류하고 예측 정확도를 측정해 비교 분석한다.

Automatic Generation of Standard Classification Code (표준 통계 분류 코드 자동 생성)

  • Lim, Heui-Seok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.388-390
    • /
    • 2006
  • 본 논문은 수동 코드 분류 규칙과 예제기반의 자동 학습을 이용하는 한국어 표준 산업/직업 코드 자동분류 시스템을 제안한다. 제안된 시스템은 산업과 직업에 대하여 설명하는 자연어를 입력받아 해당 산업/직업 분류 코드를 생성하는 시스템으로 수작업으로 구축된 규칙을 적용한 후 규칙이 적용되지 않는 레코드는 예제 기반의 학습을 이용한 자동 분류 시스템에 의해서 해당 코드를 할당한다.

  • PDF