• 제목/요약/키워드: 분류 알고리듬

검색결과 177건 처리시간 0.02초

MAP 수식화에 의한 HMM의 변별력 있는 학습 알고리듬 (A Discriminative Training Algorithm for HMM Based on MAP Formulation)

  • 전범기
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 제11회 음성통신 및 신호처리 워크샵 논문집 (SCAS 11권 1호)
    • /
    • pp.138-141
    • /
    • 1994
  • 기존의 HMM을 이용한 음성인식기는 대부분 ML 추정에 기초한 Baum-Welch 알고리듬으로 학습되었다. ML학습은 기본적으로 무한한 양의 학습 데이터가 주어지고, 각 모델들이 서로 독립이라는 가정에 기초한다. 하지만 실제적인 학습의 경우에 각 모델들이 서로 독립이라고 보기 어렵고, 학습 데이터의 양도 상당히 제한되어 있어서 인식기의 변별력을 저하시키는 주된 원인이 되고 있다. 본 논문에서는 전통적인 패턴분류기법인 Bayes 결정이론에 따라 최소오차율분류를 위한 MAP 수식화를 유도하고, 그에 기초한 HMM의 변별력 있는 학습 알고리듬을 제안한다. 최소오차율분류를 근사화한 사후확률로 표현된 비용함수를 정의하고, 그 비용함수에 조건부 경사강하법을 적용한다. 제안된 알고리듬을 분류하기 어려운 한국어 단음절 인식에 적용한 결과, 기존의 ML 알고리듬으로 학습한 경우 발생한 오인식 개수의 약 10% 가량이 개선되었다.

  • PDF

오류 역전파 학습 알고리듬을 이용한 블록경계 영역에서의 적응적 블록화 현상 제거 알고리듬 (Adaptive Blocking Artifacts Reduction Algorithm in Block Boundary Area Using Error Backpropagation Learning Algorithm)

  • 권기구;이종원;권성근;반성원;박경남;이건일
    • 한국통신학회논문지
    • /
    • 제26권9B호
    • /
    • pp.1292-1298
    • /
    • 2001
  • 본 논문에서는 공간 영역에서의 블록 분류 (block classification)와 순방향 신경망 필터(feedforward neural network filter)를 이용한 블록 기반 부호화에서의 적응적 블록화 현상 제거 알고리듬을 제안하였다. 제안한 방법에서는 각 블록 경계를 인접 블록간의 통계적 특성을 이용하여 평탄 영역과 에지 영역으로 분류한 후, 각 영역에 대하여 블록화 현상이 발생하였다고 분류된 클래스에 대하여 적응적인 블록간 필터링을 수행한다. 즉, 평탄 영역으로 분류된 영역 중 블록화 현상이 발생한 영역은 오류 역전파 학습 알고리듬 (error backpropagation learning algorithm)에 의하여 학습된 2계층 (2-layer) 신경망 필터를 이용하여 블록화 현상을 제거하고, 복잡한 영역으로 분류된 영역 중 블록화 현상이 발생한 영역은 에지 성분을 보존하기 위하여 선형 내삽을 이용하여 블록간 인접 화소의 밝기 값만을 조정함으로써 블록화 현상을 제거한다. 모의 실험 결과를 통하여 제안한 방법이 객관적 화질 및 주관적 화질 측면에서 기존의 방법보다 그 성능이 우수함을 확인하였다.

  • PDF

전 분류 기법과 후 분류 기법의 조합을 통한 효율적 병렬 타일 가시화 알고리듬 개발 (Development of Efficient Parallel Tiled Display Algorithms by Combining the Sort-first and the Sort-last Sorting Methods)

  • 최윤혁;김일호;김홍성;조진연
    • 한국항공우주학회지
    • /
    • 제36권2호
    • /
    • pp.146-155
    • /
    • 2008
  • 본 논문에서는 고해상도 타일 가시화 시스템의 성능 향상을 위해 전 분류 기법과 후 분류 기법을 조합하여 두 가지 병렬-타일 가시화 알고리듬을 제안하였다. 전 분류에서는 디스플레이 리스트와 시각 절두체 선별 기법을 이용하였으며, 후 분류에서는 선 탐색 부분 후 분류기법을 이용하였다. 벤치마킹 테스트를 통해 제안된 두 병렬-타일 가시화 기법의 성능을 고찰하였으며, 이 결과를 기반으로 제안된 두 가지 병렬-타일 가시화 알고리듬 중에서 주어진 가시화 모델에 대해 더 효율적인 알고리듬을 선정하는 방안을 제시하였다.

K-means 알고리듬을 이용한 비정상 사운드 검출 (Irregular Sound Detection using the K-means Algorithm)

  • 이재열;조상진;정의필
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2004년도 춘계학술발표대회 논문집 제23권 1호
    • /
    • pp.341-344
    • /
    • 2004
  • 발전소에서 운전 중인 발전 설비의 장비 및 기계의 동작, 감시, 진단은 매우 중요한 일이다. 발전소의 이상 감지를 위해 상태 모니터링이 사용되며, 이상이 발생되었을 때 고장의 원인을 분석하고 적절한 조치를 계획하기 위한 이상 진단 과정을 따르게 된다. 본 논문에서는 산업 현장에서 기기들의 운전시에 발생하는 기기 발생 음을 획득하여 정상/비정상을 판정하기 위한 알고리듬에 대하여 연구하였다. 사운드 감시(Sound Monitoring) 기술은 관측된 신호를 acoustic event로 분류하는 것과 분류된 이벤트를 정상 또는 비정상으로 구분하는 두 가지 과정으로 진행할 수 있다. 기존의 기술들은 주파수 분석과 패턴 인식의 방법으로 간단하게 적용되어 왔으며, 본 논문에서는 K-means clustering 알고리듬을 이용하여 사운드를 acoustic event로 분류하고 분류된 사운드를 정상 또는 비정상으로 구분하는 알고리듬을 개발하였다.

  • PDF

근사적 클러스터링에 의한 다중 전극 활동 전위 분류 (Multi-electrode Spike Sorting by Approximate Clustering)

  • 안종훈
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 가을 학술발표논문집 Vol.34 No.2 (C)
    • /
    • pp.346-351
    • /
    • 2007
  • 다중 전극으로 측정한 활동 전위의 분류(Multi-electrode spike sorting)는 단일 전극(single-electrode)보다 더 정확한 결과를 보여준다. 그러나 다중 전극에서 주어지는 활동 전위 크기들의 클러스터는 일반적으로 분류하기 쉴지 않은 문제이다. 이 논문에서는 고전적인 클러스터링 알고리듬 중의 하나인 Mountain method를 수정하여 다중 전극 활동전위의 분류에 적합한 알고리듬을 제안한다. 통상적인 데이터 클러스터링이 아닌 공간 분할을 통해 신경 데이터의 다양한 클러스터에 대해서 적응도가 높아지고 빠른 분류를 하게 된다.

  • PDF

객체검출을 위한 빠르고 효율적인 Haar-Like 피쳐 선택 알고리즘 (A Fast and Efficient Haar-Like Feature Selection Algorithm for Object Detection)

  • 정병우;박기영;황선영
    • 한국통신학회논문지
    • /
    • 제38A권6호
    • /
    • pp.486-491
    • /
    • 2013
  • 본 논문은 객체검출(object detection)에 사용되는 분류기의 학습을 위한 빠르고 효율적인 Haar-like feature 선택 알고리듬을 제안한다. 기존 AdaBoost를 이용한 Haar-like feature 선택 알고리듬은 학습 샘플들에 대한 피쳐의 에러만을 고려하여 형태적으로 유사하거나 중복되는 피쳐가 선택되는 경우가 많았다. 제안하는 알고리듬은 피쳐의 형태와 피쳐간의 거리로부터 피쳐의 유사도를 계산하고 이미 선택된 피쳐와 유사도가 큰 피쳐들을 피쳐 세트에서 제거하여 빠르고 효율적인 피쳐 선택이 이루어지도록 하였다. FERET 얼굴 데이터베이스를 사용하여 제안된 알고리듬을 사용하여 학습시킨 분류기와 기존 알고리듬을 사용한 분류기의 성능을 비교하였다. 실험 결과 제안한 피쳐 선택 방법을 사용하여 학습시킨 분류기가 기존 방법을 사용한 분류기보다 향상된 성능을 보였으며, 동일한 성능을 갖도록 학습시켰을 경우 분류기의 피쳐 수가 20% 감소하였다.

Support Vector Machine 기반 지형분류 기법 (Terrain Cover Classification Technique Based on Support Vector Machine)

  • 성기열;박준성;유준
    • 전자공학회논문지SC
    • /
    • 제45권6호
    • /
    • pp.55-59
    • /
    • 2008
  • 야외 환경에서 무인차량의 자율주행에 있어서 효과적인 기동제어를 위해서는 장애물 탐지나 지형의 기하학적인 형상 정보외에 탐지된 장애물 및 지형 표면에 대한 재질 유형의 인식 및 분류 또한 중요한 요소이다. 영상 기반의 지표면 분류 알고리듬은 입력 영상에 대한 전처리, 특징추출, 분류 및 후처리의 절차로 수행된다. 본 논문에서는 컬러 CCD 카메라로부터 획득된 야외 지형영상에 대해 색상 및 질감 정보를 이용한 지형분류 기법을 제시한다. 전처리 단계에서 색공간 변환을 수행하고, 색상과 질감 정보를 이용하기 위해 웨이블릿 변환 특징을 사용하였으며, 분류기로서는 SVM(support vector machine)을 적용하였다. 야외 환경에서 획득된 실영상에 대한 실험을 통하여 제시된 알고리듬의 분류 성능을 평가하였으며, 제시된 알고리듬에 의한 효과적인 야지 지형분류의 가능성을 확인하였다.

영역분류와 형태학적 필터링을 이용한 잡음제거 (The Noise Reduction Using Block Classification and Morphological Filtering)

  • 김인겸;정연식
    • 전자공학회논문지S
    • /
    • 제36S권3호
    • /
    • pp.57-67
    • /
    • 1999
  • 본 논문에서는 영상 부호화시 전처리 과정을 수행함으로써 잡음을 제거하는 새로운 알고리듬을 제안하였다. 제안한 알고리듬은 영상의 선명도를 유지할뿐아니라 전체적인 부호화 효율을 높여준다. 효율향상 과정은 다음과 같다. 첫째 블록 특성에 다라 영역을 분류하며, 둘째로는 Canny 연산자와 Sobel 연산자를 이용하여 경계선 방향을 얻는다. 세 번째로 블록 특성과 경계선 방향에 따라 방향성 형태학적 필터를 구한다. 형태학적 필터링은 영상내 존재하는 잡음을 제거하고, 표준 영상의 경우 인간이 시각적으로 느낄 수 없는 성분을 제거한다. 형태학적 필터링은 경계선 성분을 손실시키는 결과가 발생하지만, 제안한 알고리듬은 손실된 경계선 영역을 복원하는 과정을 거친다. 그러한 과정의 결과로, 전체적인 부호화 효율이 향상된다. 특히, 제안한 알고리듬을 적용한 표준영상의 경우, 약 50-50%의 비트 발생량이 줄어드는 결과를 나타내었다. 잡음 분산값을 달리하여 만든 잡음 영상에 제안한 방법을 적용한 결과, 영상의 선명도를 유지하였다. 제안한 알고리듬은 인간의 시각 특성을 고려한 미세한 잡음 제거 방법에서 우수한 성능을 나타내었으며, 영상의 선명도를 유지하는 것을 보여 주었다.

  • PDF

적응적 탐색범위를 사용한 블록정합 알고리듬 (A fast block matching algorithm with adaptive search range)

  • 강문철;배황식;정정화
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1932-1935
    • /
    • 2003
  • 본 논문에서는 MPEG-2, MPEG-4, H.263 등에서 블록정합을 위해 사용되는 움직임 추정(Motion Estimation) 기법에서 적응적 탐색 범위를 기존의 알고리듬에 적용시킴으로써 계산량을 줄이고 화질도 개선하는 방법을 제안한다 제안된 알고리듬은 먼저 이웃한 움직임 벡터(Motion Vector)의 위치를 이용하여 예상된 움직임 벡터를 찾고 이 예상된 움직임 벡터의 X, Y 값의 크기를 작은 값, 중간 값, 큰 값, 세 가지로 분류해서 탐색범위를 적응적으로 변화시켜 움직임 벡터가 있을 확률이 큰 범위를 집중적으로 찾는다 그리고 각 분류에서 작은 값일 때는 전역 탐색을 적용하고 큰 값일 때는 기존의 알고리듬을 적용시키고 중간 값 일 때는 3단계탐색 기법을 적용시켜 더 적합한 움직임 벡터를 찾도록 하였다. 그리고 작은 값 일 때 구해진 움직임 벡터의 SAD(Sum of Absolute Difference) 값과 이웃한 움직임 벡터의 SAD값을 비교해 국소점에 빠졌다고 판단이 되면 다시 탐색 범위를 조정해서 움직임 벡터를 구함으로써 국소점에 빠지는 경우를 줄였다.

  • PDF

공간지역확장과 계층집단연결 기법을 이용한 무감독 영상분류 (Unsupervised Image Classification Using Spatial Region Growing Segmentation and Hierarchical Clustering)

  • 이상훈
    • 대한원격탐사학회지
    • /
    • 제17권1호
    • /
    • pp.57-69
    • /
    • 2001
  • 본 연구는 무감독 영상분류를 위하여 공간지역 확장을 통하여 영상을 분할한 후 분할된 집단을 한정된 수의 클래스로 분류하는 다중단계 기법을 제안하고 있다. 제안된 알고리듬은 무감독 분석을 위하여 작은 집단들을 단계적으로 큰 집단들로 합병해 가는 계층집단연결 기법에 기반을 두고 있다. 다중단계 기법의 영상분할 단계는 공간적으로 근접하고 있는 이웃지역간의 결합을 통하여 최종적으로 전체영상 공간내의 모든 집단에 대해서 서로 이웃하고 있는 집단들의 물리적 특성이 서로 다르도록 영상을 분할하는 과정이고, 영상분류 단계는 결합 지역의 공간적 제약 없이 영상 분할 단계에서 분할된 지역을 상대적으로 적은 수의 클래스로 분류하는 과정이다. 제안 된 알고리듬에서 사용하고 있는 계층집단연결 기법의 계산/기억 상의 복잡성을 완화시키기 위해 상호최근사 이웃쌍과 다중창 작업을 사용하고 있다. 모의 자료를 사용하여 제단 된 알고리듬 대한 평가와 효율성을 검증하였고 경기도 용인.능평지역의 LANDSAT ETM+ 자료에 적용한 결과를 예시하고 있다.