• Title/Summary/Keyword: 분류하기

Search Result 34,758, Processing Time 0.075 seconds

A Case Study for Rock Mass Classification and Statistical Analysis in Roadway Tunnel (도로터널에서의 암반분류 및 통계분석 사례)

  • 김영근;유동욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06b
    • /
    • pp.197-226
    • /
    • 2003
  • 터널에서의 암반분류/평가는 지보패턴결정 뿐만 아니라 터널주변암반에 대한 설계정 수 산정 및 물성평가에 있어 매우 중요한 요소라 할 수 있다. 암반분류는 각 국 또는 주요기관 별로 분류안이 만들어져 있으며, 현재 RMR분류와 Q-system이 가장 활발히 적용되고 있다. 본고에서는 터널설계단계에서 암반분류방법과 지보패턴결정과정을 고찰하였으며, 도로설계를 중심으로 적용현황을 분석하였다 또한 실제 터널시공시 암반분류 및 판정에 의한 지보공 변경사례를 살펴봄으로서 시공 중 암반분류/평가의 의미를 고찰하였다. 그리고 암반분류요소들에 대한 통계분석을 실시하여 암반분류요소들간의 상관관계를 분석하였다.

  • PDF

A Study on the Hangeul Pattern Classification by Using Adaptive Resonance Theory Neural Network (ART 신경회로망을 이용한 한글 유형 분류에 관한 연구)

  • Jang, Jae-Hyuk;Park, Chang-Han;NamKung, Jae-Chan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.603-606
    • /
    • 2003
  • 본 논문에서는 ART(Adaptive Resonance Theory) 신경회로망을 이용하여 한글 모음을 인식하고, 그 유형을 분류하는 방법을 제안하였다. 기존의 연구들은 단순히 문자의 선분, 획 등의 정합만을 이용하여 한글의 자소 분류에 중점을 두었다. 그러나 인식 대상 운자의 특성이 각각 다르므로 효율적인 인식을 위해서는 먼저 포괄적인 특정적 유형 분류가 필요하다. 제안된 한글 유형 분류 시스템에서는 먼저 ART 신경회로망의 문제점인 증가분류 알고리즘의 단점을 최소화할 수 있도록 비교층에 최초 활성화패턴의 크기를 기억하는 메모리를 두고 각 층간 하향틀 변화를 경계인수 값을 "1" 이내로 제한하여 이미 입력된 패턴을 다시 입력할 때, 새로운 노드의 활성화를 방지하여 비교적 입력순서에 둔감한 분류가 가능하였다. 실험 결과 제안된 시스템에서는 한글의 6형식 중 1, 3, 4, 5형식 분류는 평균 97.3% 의 분류율을 보였으나, 나머지 2, 6형식 분류는 다소 떨어지는 평균 94.9% 분류율를 보였다.

  • PDF

Automatic Text Classification Method Using Keywords and Unlabeled Text (주제어와 미분류 문서들을 이용한 문서의 자동 분류 방법)

  • Lee Kang-Il;Lee Chang-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.592-594
    • /
    • 2005
  • 문서를 분류하기 위해서는 분류주제에 맞춰 미리 분류가 된 자료(labeled data)가 필요하다. 하지만 미리 분류가 된 자료를 만들기 위해서는 사람이 직접 그 문서의 의미를 해석하고 일일이 분류를 해야 하기 때문에 시간이 많이 소모가 된다. 본 논문에서는 비록 사랑이 직접 분류한 자료를 이용하는 것에 비해서 분류 정확도는 조금 떨어지지만, 대신 주제어와 미분류 문서(unlabeled data)를 이용해서 문서를 분류하는 방법을 제시하려고 한다. 이와 같은 주제어와 미분류 문서의 경우에는 구하기가 쉽고, 사랑이 일일이 분류하는 작업이 필요로 하지 않기 때문에 비용과 시간이 크게 절약이 된다는 장정이 있다.

  • PDF

A Study on Development Trends in Domestic and Foreign Construction Information Classification System (국내외 건설정보 분류체계 개발 동향에 관한 연구)

  • Ok, Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.1296-1299
    • /
    • 2012
  • 건설정보 분류체계에 관한 연구는 기존에 수차례 이루어졌으며, 그 결과로 건설정보 분류체계를 제시하고 이를 고시하였다. 하지만, 건설정보 분류체계가 고시된 후 수년이 경과되었으나, 아직까지 현업에서의 활용은 극히 저조한 상태이다. 이러한 요인은 당초 건설정보 분류체계가 실제 현업에서 활용할 수 있는 수준으로 분류체계를 구성하여야 하나, 개념적인 분류로 이루어지고, 목적 및 용도별 구분이 명확하지 않아 활용방법을 이해하는데 어려움이 발생되고 있다. 또한 법적인 구속력이 미약하여 적용이 미흡하며 각 발주기관의 정보분류체계의 인식부족 및 활용분야의 인식부족으로, 실무 활용성이 미흡하다고 볼 수 있다. 본 연구에서는 기존 국내외 건설정보 분류체계의 연구사례와 국내외 건설정보 분류체계의 유형 및 개발 동향에 관하여 살펴보고자 한다. 이를 통해 현재 건설정보 분류체계의 주요 문제점을 분석하고, 향후 개선방안을 개략적으로 제시하고자 한다.

Hybrid Approach Combining Deep Learning and Rule-Based Model for Automatic IPC Classification of Patent Documents (딥러닝-규칙기반 병행 모델을 이용한 특허문서의 자동 IPC 분류 방법)

  • Kim, Yongil;Oh, Yuri;Sim, Woochul;Ko, Bongsoo;Lee, Bonggun
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.347-350
    • /
    • 2019
  • 인공지능 관련 기술의 발달로 다양한 분야에서 인공지능 활용에 대한 관심이 고조되고 있으며 전문영역에서도 기계학습 기법을 활용한 연구들이 활발하게 이루어지고 있다. 특허청에서는 분야별 전문지식을 가진 분류담당자가 출원되는 모든 특허에 국제특허분류코드(이하 IPC) 부여 작업을 수행하고 있다. IPC 분류와 같은 전문적인 업무영역에서 딥러닝을 활용한 자동 IPC 분류 서비스를 제공하기 위해서는 기계학습을 이용하는 분류 모델에 분야별 전문지식을 직관적으로 반영하는 것이 필요하다. 이를 위해 본 연구에서는 딥러닝 기반의 IPC 분류 모델과 전문지식이 반영된 분류별 어휘사전을 활용한 규칙기반 분류 모델을 병행하여 특허문서의 IPC분류를 자동으로 추천하는 방법을 제안한다.

  • PDF

Taxonomy Induction from Wikidata using Directed Acyclic Graph's Centrality (방향 비순환 그래프의 중심성을 이용한 위키데이터 기반 분류체계 구축)

  • Cheon, Hee-Seon;Kim, Hyun-Ho;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.582-587
    • /
    • 2021
  • 한국어 통합 지식베이스를 생성하기 위해 필수적인 분류체계(taxonomy)를 구축하는 방식을 제안한다. 위키데이터를 기반으로 분류 후보군을 추출하고, 상하위 관계를 통해 방향 비순환 그래프(Directed Acyclic Graph)를 구성한 뒤, 국부적 도달 중심성(local reaching centrality) 등의 정보를 활용하여 정제함으로써 246 개의 분류와 314 개의 상하위 관계를 갖는 분류체계를 생성한다. 워드넷(WordNet), 디비피디아(DBpedia) 등 기존 링크드 오픈 데이터의 분류체계 대비 깊이 있는 계층 구조를 나타내며, 다중 상위 분류를 지닐 수 있는 비트리(non-tree) 구조를 지닌다. 또한, 위키데이터 속성에 기반하여 위키데이터 정보가 있는 인스턴스(instance)에 자동으로 분류를 부여할 수 있으며, 해당 방식으로 실험한 결과 99.83%의 분류 할당 커버리지(coverage) 및 99.81%의 분류 예측 정확도(accuracy)를 나타냈다.

  • PDF

Multi-label Open Intent Classification using Known Intent Information (의도 정보를 활용한 다중 레이블 오픈 의도 분류)

  • Nahyeon Park;Seongmin Cho;Hyun-Je Song
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.479-484
    • /
    • 2023
  • 다중 레이블 오픈 의도 분류란 다중 의도 분류와 오픈 의도 분류가 합쳐져 오픈 도메인을 가정하고 진행하는 다중 의도 분류 문제이다. 발화 속에는 여러 의도들이 존재한다. 이때 사전에 정의된 의도 여부만을 판별하는 것이 아니라 사전에 정의되어 있는 의도에 대해서만이라도 어떤 의도인지 분류할 수 있어야 한다. 본 논문에서는 발화 속 의도 정보를 활용하여 다중 레이블 오픈 의도를 분류하는 모델을 제안한다. 먼저, 문장의 의도 개수를 예측한다. 그리고 다중 레이블 의도 분류기를 통해 다중 레이블 의도 분류를 진행하여 의도 정보를 획득한다. 획득한 의도 정보 속 다중 의도 개수와 전체 의도 개수를 비교하여 전체 의도 개수가 더 많다면 오픈 의도가 존재한다고 판단한다. 실험 결과 제안한 방법은 MixATIS의 75% 의도에서 정확도 94.49, F1 97.44, MixSNIPS에서는 정확도 86.92, F1 92.96의 성능을 보여준다.

  • PDF

Enhancing Classification Model Performance through Noise Data Refinement (노이즈 데이터 정제를 통한 분류모델 성능 향상)

  • Unkuk Jeong;Seungshik Kang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.559-562
    • /
    • 2024
  • 자연어 기반의 분류모델을 개발할 때 높은 성능을 획득하기 위해서는 데이터의 품질이 중요한 요소이다. 특히 무역상품 국제 분류체계 HS-CODE에서 상품명을 기반으로 HS코드를 분류할 때, 라벨링 된 데이터의 품질에 의해서 분류모델의 성능이 좌우된다. 하지만 현실적으로 확보 가능한 데이터셋에는 데이터 라벨링 오류나 데이터로 활용하기에 특징점이 부족한 데이터들이 다수 존재하기도 한다. 본 연구에서는 분류모델 학습 데이터의 정제 방법론으로, 딥러닝 기반 노이즈 검출 알고리즘을 제안한다. 분류 대상의 특징점이 분류 경계값 주변에 존재한다면 분류하기 모호한 노이즈 데이터일 가능성이 높다고 가정하고, 해당 노이즈 데이터를 검출하는 방법으로 딥러닝 기술을 활용한다. 해당 경계값 노이즈 검출 알고리즘으로 데이터를 정제한 뒤 학습모델의 성능비교 결과, 기존 대비 우수한 분류 정확도를 기록하였다.

Subject Based Classification: Conceptualization and the Development Plan as a Classificatory System (주제어기반 분류의 분류론적 개념 정립 및 발전 방안 - 발전과정 및 기능 분석을 통하여 -)

  • Baek, Ji-Won
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.23 no.4
    • /
    • pp.5-24
    • /
    • 2012
  • The aim of this study is 1) to analyse the historical development and current condition of the subject based classification(SBC), 2) to clarify the function and to categorize the specific kind of SBC, for its conceptualization and the development plan. For this purpose, almost 30 cases, for the period 1937 through now, were analyzed concerning their terms used in the names and the specific kinds as SBC. In addition, the analysis was made regarding how the SBC fulfill the selected main functions as a classificatory scheme and how SBC is inter-related with the other knowledge organization systems(KOS) such as classification and subject heading. Based on the above analysis, the conclusion addressed that SBC could be defined in consideration of the detailed function, type, information environment, and interconnection among the KOS, and suggested the future development plan of SBC as a classification scheme.

An Empirical Study on Improving the Performance of Text Categorization Considering the Relationships between Feature Selection Criteria and Weighting Methods (자질 선정 기준과 가중치 할당 방식간의 관계를 고려한 문서 자동분류의 개선에 대한 연구)

  • Lee Jae-Yun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.39 no.2
    • /
    • pp.123-146
    • /
    • 2005
  • This study aims to find consistent strategies for feature selection and feature weighting methods, which can improve the effectiveness and efficiency of kNN text classifier. Feature selection criteria and feature weighting methods are as important factor as classification algorithms to achieve good performance of text categorization systems. Most of the former studies chose conflicting strategies for feature selection criteria and weighting methods. In this study, the performance of several feature selection criteria are measured considering the storage space for inverted index records and the classification time. The classification experiments in this study are conducted to examine the performance of IDF as feature selection criteria and the performance of conventional feature selection criteria, e.g. mutual information, as feature weighting methods. The results of these experiments suggest that using those measures which prefer low-frequency features as feature selection criterion and also as feature weighting method. we can increase the classification speed up to three or five times without loosing classification accuracy.